Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_1_a1, author = {O. Beznosova and A. Reznikov}, title = {Sharp estimates involving $A_\infty$ and $L\log L$ constants, and their applications to {PDE}}, journal = {Algebra i analiz}, pages = {40--67}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_1_a1/} }
TY - JOUR AU - O. Beznosova AU - A. Reznikov TI - Sharp estimates involving $A_\infty$ and $L\log L$ constants, and their applications to PDE JO - Algebra i analiz PY - 2014 SP - 40 EP - 67 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2014_26_1_a1/ LA - en ID - AA_2014_26_1_a1 ER -
O. Beznosova; A. Reznikov. Sharp estimates involving $A_\infty$ and $L\log L$ constants, and their applications to PDE. Algebra i analiz, Tome 26 (2014) no. 1, pp. 40-67. http://geodesic.mathdoc.fr/item/AA_2014_26_1_a1/
[1] Bañuelos R., Janakiraman P., “$L^p$-bounds for the Beurling–Ahlfors transform”, Trans. Amer. Math. Soc. (to appear)
[2] Bojarski B., “Remarks on the stability of reverse Hölder inequalities and quasicinfirmal mappings”, Ann. Acad. Sci. Fenn. Math., 10 (1985), 89–94 | DOI | MR | Zbl
[3] Buckley S., “Estimates for operator norms on weighted spaces and reverse Jensen inequalities”, Trans. Amer. Math. Soc., 340:1 (1993), 253–272 | DOI | MR | Zbl
[4] Buckley S., “Summation conditions on weights”, Michigan Math. J., 40:1 (1993), 153–170 | DOI | MR | Zbl
[5] Caffarelli L., Fabes E., Kenig C., “Completely singular elliptic harmonic measures”, Indiana Univ. Math. J., 30 (1981), 917–924 | DOI | MR | Zbl
[6] Coifman R., Fefferman C., “Weighted norm inequalities for maximal functions and singular integrals”, Studia Math., 51 (1974), 241–250 | MR | Zbl
[7] Corporente R., “A precise relation among $A_\infty$ and $G_1$ constants in one dimension”, Rend. Accad. Sci. Fis. Mat. Napoli (4), 72 (2005), 65–70 | MR | Zbl
[8] Corporente R., Weighted integral inequalities, BMO-spaces and applications, PhD Thesis, 2007
[9] Cruz-Uribe D., Neugebauer C. J., “The structure of the reverse Hölder classes”, Trans. Amer. Math. Soc., 347:3 (1995), 255–270 | MR
[10] Dahlberg B., “On the absolute continuity of elliptic measures”, Amer. J. Math., 108:5 (1986), 1119–1138 | DOI | MR | Zbl
[11] D'Apuzzo L., Sbordone C., “Reverse Hölder inequalities: a sharp result”, Rend. Mat. Appl. (7), 10:2 (1990), 357–366 | MR
[12] Fabes E., Jerison D., Kenig C., “Necessary and sufficient conditions for absolute continuity of elliptic-harmonic measure”, Ann. of Math. (2), 119:1 (1984), 121–141 | DOI | MR | Zbl
[13] Fefferman R., “A criterion for the absolute continuity of the harmonic measure associated with an elliptic operator”, J. Amer. Math. Soc., 2:1 (1989), 127–135 | DOI | MR | Zbl
[14] Fefferman R., Kenig C., Pipher J., “The theory of weights and the Dirichlet problem for elliptic equations”, Ann. of Math. (2), 134:1 (1991), 65–124 | DOI | MR | Zbl
[15] García-Cuerva J., Rubio de Francia J., Weighted norm inequalities and related topics, North-Holland Math. Studies, 116, North-Holland Publ. Co., Amsterdam, 1985 | MR | Zbl
[16] Gehring F. W., “The $L_p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277 | DOI | MR | Zbl
[17] Grafakos L., Classical and modern Fourier analysis, Pearson Education Inc., Upper Saddle River, NJ, 2004 | MR | Zbl
[18] Hofmann S., Martell J. M., “A note on $A_\infty$ estimates via extrapolation of Carleson measures”, The AMSI-ANH Workshop on Spectral Theory and Harmonic Analysis, Proc. Centre Math. Appl. Austral. Nat. Univ., 44, Austral Nat. Univ., Canberra, 2010, 143–166 | MR | Zbl
[19] Hytönen T., The sharp weighted bound for general Calderon–Zygmund operators, 2010, arXiv: 1007.4330 | MR
[20] Hytönen T., Pérez C., Sharp weighted bounds involving $A_\infty$, arXiv: 1103.5562v1
[21] Ivanishvili P., Osipov N., Stolyarov D., Vasyunin V., Zatickiy P., “On Bellman function for extremal problems in the BMO space”, C. R. Math. Acad. Sci. Paris, 350:11–12 (2012), 561–564 | DOI | MR | Zbl
[22] Iwaniec T., Verde A., “On the operator $\mathfrak Lf=f\log|f|$”, J. Funct. Anal., 169:2 (1999), 391–420 | DOI | MR | Zbl
[23] Kenig C., Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional Conference Series in Math., 83, Amer. Math. Soc., RI, 1994 | MR | Zbl
[24] Korenovskii A. A., “O tochnom prodolzhenii obratnogo neravenstva Gëldera i usloviya Makenkhuapta”, Mat. zametki, 52:6 (1992), 32–44 | MR | Zbl
[25] Littman W., Stampacchia G., Weinberger H., “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 43–77 | MR | Zbl
[26] Moscariello G., Sbordone C., “$A_\infty$ as a limit case of reverse Hölder inequalities when the exponent tends to 1”, Ricerche Mat., 44:1 (1995), 131–144 | MR | Zbl
[27] Muckenhoupt B., “The equivalence of two conditions for weight functions”, Studia Math., 49 (1973/74), 101–106 | MR
[28] Reznikov A., Vasyunin V., Volberg A., An observation: cut-off of the weight $w$ does not increase the $A_{p_1p_2}$-norm of $w$, 2010, arXiv: 1008.3635v1
[29] Sbordone C., “Rearrangement of functions and reverse Hölder inequalities”, Ennio De Giorgi colloquium (Paris, 1983), Res. Notes in Math., 125, Pitman, Boston, MA, 1985, 139–148 | MR
[30] Slavin L., Vasyunin V., Sharp results in the integral form of John–Nirenberg inequality, Preprint, 2007 | MR
[31] Stein E., “Note on the class $L\log L$”, Studia Math., 32 (1969), 305–310 | MR | Zbl
[32] Stein E., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[33] Vasyunin V. I., “Tochnaya konstanta v obratnom neravenstve Gëldera dlya makenkhauptovskikh vesov”, Algebra i analiz, 15:1 (2003), 73–117 | MR | Zbl
[34] Vasyunin V. I., “Vzaimnye otsenki $L^p$-norm i funktsiya Bellmana”, Zap. nauch. semin. POMI, 355, 2008, 81–138 | MR | Zbl
[35] Wik I., “Reverse Hölder inequalities”, Met. of Real Anal. and PDE's, 14 (1992), 131–137
[36] Wilson M., Weighted Littlewood–Paley theory and exponential-square integrability, Lecture Notes in Math., 1924, Springer, Berlin, 2008 | MR | Zbl