Sharp estimates involving $A_\infty$ and $L\log L$ constants, and their applications to PDE
Algebra i analiz, Tome 26 (2014) no. 1, pp. 40-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is a well-known fact that the union $\bigcup_{p>1}RH_p$ of the Reverse Hölder classes coincides with the union $\bigcup_{p>1}A_p=A_\infty$ of the Muckenhoupt classes, but the $A_\infty$ constant of the weight $w$, which is a limit of its $A_p$ constants, is not a natural characterization for the weight in Reverse Hölder classes. In the paper, the $RH_1$ condition is introduced as a limiting case of the $RH_p$ inequalities as $p$ tends to 1, and a sharp bound is found on the $RH_1$ constant of the weight $w$ in terms of its $A_\infty$ constant. Also, the sharp version of the Gehring theorem is proved for the case of $p=1$, completing the answer to the famous question of Bojarski in dimension one. The results are illustrated by two straightforward applications to the Dirichlet problem for elliptic PDE's. Despite the fact that the Bellman technique, which is employed to prove the main theorems, is not new, the authors believe that their results are useful and prove them in full detail.
@article{AA_2014_26_1_a1,
     author = {O. Beznosova and A. Reznikov},
     title = {Sharp estimates involving $A_\infty$ and $L\log L$ constants, and their applications to {PDE}},
     journal = {Algebra i analiz},
     pages = {40--67},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_1_a1/}
}
TY  - JOUR
AU  - O. Beznosova
AU  - A. Reznikov
TI  - Sharp estimates involving $A_\infty$ and $L\log L$ constants, and their applications to PDE
JO  - Algebra i analiz
PY  - 2014
SP  - 40
EP  - 67
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_1_a1/
LA  - en
ID  - AA_2014_26_1_a1
ER  - 
%0 Journal Article
%A O. Beznosova
%A A. Reznikov
%T Sharp estimates involving $A_\infty$ and $L\log L$ constants, and their applications to PDE
%J Algebra i analiz
%D 2014
%P 40-67
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_1_a1/
%G en
%F AA_2014_26_1_a1
O. Beznosova; A. Reznikov. Sharp estimates involving $A_\infty$ and $L\log L$ constants, and their applications to PDE. Algebra i analiz, Tome 26 (2014) no. 1, pp. 40-67. http://geodesic.mathdoc.fr/item/AA_2014_26_1_a1/

[1] Bañuelos R., Janakiraman P., “$L^p$-bounds for the Beurling–Ahlfors transform”, Trans. Amer. Math. Soc. (to appear)

[2] Bojarski B., “Remarks on the stability of reverse Hölder inequalities and quasicinfirmal mappings”, Ann. Acad. Sci. Fenn. Math., 10 (1985), 89–94 | DOI | MR | Zbl

[3] Buckley S., “Estimates for operator norms on weighted spaces and reverse Jensen inequalities”, Trans. Amer. Math. Soc., 340:1 (1993), 253–272 | DOI | MR | Zbl

[4] Buckley S., “Summation conditions on weights”, Michigan Math. J., 40:1 (1993), 153–170 | DOI | MR | Zbl

[5] Caffarelli L., Fabes E., Kenig C., “Completely singular elliptic harmonic measures”, Indiana Univ. Math. J., 30 (1981), 917–924 | DOI | MR | Zbl

[6] Coifman R., Fefferman C., “Weighted norm inequalities for maximal functions and singular integrals”, Studia Math., 51 (1974), 241–250 | MR | Zbl

[7] Corporente R., “A precise relation among $A_\infty$ and $G_1$ constants in one dimension”, Rend. Accad. Sci. Fis. Mat. Napoli (4), 72 (2005), 65–70 | MR | Zbl

[8] Corporente R., Weighted integral inequalities, BMO-spaces and applications, PhD Thesis, 2007

[9] Cruz-Uribe D., Neugebauer C. J., “The structure of the reverse Hölder classes”, Trans. Amer. Math. Soc., 347:3 (1995), 255–270 | MR

[10] Dahlberg B., “On the absolute continuity of elliptic measures”, Amer. J. Math., 108:5 (1986), 1119–1138 | DOI | MR | Zbl

[11] D'Apuzzo L., Sbordone C., “Reverse Hölder inequalities: a sharp result”, Rend. Mat. Appl. (7), 10:2 (1990), 357–366 | MR

[12] Fabes E., Jerison D., Kenig C., “Necessary and sufficient conditions for absolute continuity of elliptic-harmonic measure”, Ann. of Math. (2), 119:1 (1984), 121–141 | DOI | MR | Zbl

[13] Fefferman R., “A criterion for the absolute continuity of the harmonic measure associated with an elliptic operator”, J. Amer. Math. Soc., 2:1 (1989), 127–135 | DOI | MR | Zbl

[14] Fefferman R., Kenig C., Pipher J., “The theory of weights and the Dirichlet problem for elliptic equations”, Ann. of Math. (2), 134:1 (1991), 65–124 | DOI | MR | Zbl

[15] García-Cuerva J., Rubio de Francia J., Weighted norm inequalities and related topics, North-Holland Math. Studies, 116, North-Holland Publ. Co., Amsterdam, 1985 | MR | Zbl

[16] Gehring F. W., “The $L_p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277 | DOI | MR | Zbl

[17] Grafakos L., Classical and modern Fourier analysis, Pearson Education Inc., Upper Saddle River, NJ, 2004 | MR | Zbl

[18] Hofmann S., Martell J. M., “A note on $A_\infty$ estimates via extrapolation of Carleson measures”, The AMSI-ANH Workshop on Spectral Theory and Harmonic Analysis, Proc. Centre Math. Appl. Austral. Nat. Univ., 44, Austral Nat. Univ., Canberra, 2010, 143–166 | MR | Zbl

[19] Hytönen T., The sharp weighted bound for general Calderon–Zygmund operators, 2010, arXiv: 1007.4330 | MR

[20] Hytönen T., Pérez C., Sharp weighted bounds involving $A_\infty$, arXiv: 1103.5562v1

[21] Ivanishvili P., Osipov N., Stolyarov D., Vasyunin V., Zatickiy P., “On Bellman function for extremal problems in the BMO space”, C. R. Math. Acad. Sci. Paris, 350:11–12 (2012), 561–564 | DOI | MR | Zbl

[22] Iwaniec T., Verde A., “On the operator $\mathfrak Lf=f\log|f|$”, J. Funct. Anal., 169:2 (1999), 391–420 | DOI | MR | Zbl

[23] Kenig C., Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional Conference Series in Math., 83, Amer. Math. Soc., RI, 1994 | MR | Zbl

[24] Korenovskii A. A., “O tochnom prodolzhenii obratnogo neravenstva Gëldera i usloviya Makenkhuapta”, Mat. zametki, 52:6 (1992), 32–44 | MR | Zbl

[25] Littman W., Stampacchia G., Weinberger H., “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 43–77 | MR | Zbl

[26] Moscariello G., Sbordone C., “$A_\infty$ as a limit case of reverse Hölder inequalities when the exponent tends to 1”, Ricerche Mat., 44:1 (1995), 131–144 | MR | Zbl

[27] Muckenhoupt B., “The equivalence of two conditions for weight functions”, Studia Math., 49 (1973/74), 101–106 | MR

[28] Reznikov A., Vasyunin V., Volberg A., An observation: cut-off of the weight $w$ does not increase the $A_{p_1p_2}$-norm of $w$, 2010, arXiv: 1008.3635v1

[29] Sbordone C., “Rearrangement of functions and reverse Hölder inequalities”, Ennio De Giorgi colloquium (Paris, 1983), Res. Notes in Math., 125, Pitman, Boston, MA, 1985, 139–148 | MR

[30] Slavin L., Vasyunin V., Sharp results in the integral form of John–Nirenberg inequality, Preprint, 2007 | MR

[31] Stein E., “Note on the class $L\log L$”, Studia Math., 32 (1969), 305–310 | MR | Zbl

[32] Stein E., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[33] Vasyunin V. I., “Tochnaya konstanta v obratnom neravenstve Gëldera dlya makenkhauptovskikh vesov”, Algebra i analiz, 15:1 (2003), 73–117 | MR | Zbl

[34] Vasyunin V. I., “Vzaimnye otsenki $L^p$-norm i funktsiya Bellmana”, Zap. nauch. semin. POMI, 355, 2008, 81–138 | MR | Zbl

[35] Wik I., “Reverse Hölder inequalities”, Met. of Real Anal. and PDE's, 14 (1992), 131–137

[36] Wilson M., Weighted Littlewood–Paley theory and exponential-square integrability, Lecture Notes in Math., 1924, Springer, Berlin, 2008 | MR | Zbl