When should a~polynomial's root nearest to a~real number be real itself?
Algebra i analiz, Tome 25 (2013) no. 6, pp. 37-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditions are studied under which the root of an integer polynomial nearest to a given real number $y$ is real. It is proved that if a polynomial $P\in\mathbb Z[x]$ of degree $d\geq2$ satisfies $|P(y)|\ll1/M(P)^{2d-3}$ for some real number $y$, where the implied constant depends on $d$ only, then the root of $P$ nearest to $y$ must be real. It is also shown that the exponent $2d-3$ is best possible for $d=2,3$ and that it cannot be replaced by a number smaller than $(2d-3)d/(2d-2)$ for each $d\geq4$.
Keywords: polynomial root separation, real roots, Mahler's measure, discriminant.
@article{AA_2013_25_6_a2,
     author = {A. Dubickas},
     title = {When should a~polynomial's root nearest to a~real number be real itself?},
     journal = {Algebra i analiz},
     pages = {37--49},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_6_a2/}
}
TY  - JOUR
AU  - A. Dubickas
TI  - When should a~polynomial's root nearest to a~real number be real itself?
JO  - Algebra i analiz
PY  - 2013
SP  - 37
EP  - 49
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_6_a2/
LA  - en
ID  - AA_2013_25_6_a2
ER  - 
%0 Journal Article
%A A. Dubickas
%T When should a~polynomial's root nearest to a~real number be real itself?
%J Algebra i analiz
%D 2013
%P 37-49
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_6_a2/
%G en
%F AA_2013_25_6_a2
A. Dubickas. When should a~polynomial's root nearest to a~real number be real itself?. Algebra i analiz, Tome 25 (2013) no. 6, pp. 37-49. http://geodesic.mathdoc.fr/item/AA_2013_25_6_a2/

[1] Beresnevich V., Bernik V., Götze F., “The distribution of close conjugate algebraic numbers”, Compos. Math., 146:5 (2010), 1165–1179 | DOI | MR | Zbl

[2] Budarina N. V., Bernik V. I., O'Donnel Kh., “Ob usloviyakh, pri kotorykh blizhaishii k argumentu koren tselochislennogo mnogochlena okazyvaetsya deistvitelnym chislom”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk, 2011, no. 1, 118–119 | MR

[3] Budarina N. V., Dikkinson D., Bernik V. I., “O deistvitelnykh i kompleksnykh kornyakh tselochislennykh polinomov v okrestnosti ikh malykh znachenii”, Dokl. NAN Belarusi, 55:5 (2011), 18–21 | MR | Zbl

[4] Budarina N. V., O'Donnell H., “On a problem of Nesterenko: when is the closest root of a polynomial a real number?”, Int. J. Number Theory, 8:3 (2012), 801–811 | DOI | MR | Zbl

[5] Bugeaud Y., Dujella A., “Root separation for irreducible integer polynomials”, Bull. London Math. Soc., 43:6 (2011), 1239–1244 | DOI | MR | Zbl

[6] Bugeaud Y., Dujella A., Root separation for reducible integer polynomials, 2013, 13 pp., arXiv: 1306.2128v1 | MR

[7] Bugeaud Y., Mignotte M., “On the distance between roots of integer polynomials”, Proc. Edinb. Math. Soc. (2), 47:3 (2004), 553–556 | DOI | MR | Zbl

[8] Bugeaud Y., Mignotte M., “Polynomial root separation”, Int. J. Number Theory, 6:3 (2010), 587–602 | DOI | MR | Zbl

[9] Cohen H., A course in computational algebraic number theory, Graduate Text in Math., 138, 4th ed., Springer-Verlag, Berlin, 2000 | DOI | MR

[10] Dubickas A., “On the location of roots of non-reciprocal integer polynomials”, Appl. Algebra Engng. Comm. Comput., 22:1 (2011), 1–19 | DOI | MR | Zbl

[11] Dubickas A., “Polynomial root separation in terms of the Remak height”, Turkish J. Math., 37:5 (2013), 747–761 | MR | Zbl

[12] Dujella A., Pejković T., “Root separation for reducible monic quartics”, Rend. Semin. Mat. Univ. Padova, 126 (2011), 63–72 | DOI | MR | Zbl

[13] Evertse J.-H., “Distances between the conjugates of an algebraic number”, Publ. Math. Debrecen, 65:3–4 (2004), 323–340 | MR | Zbl

[14] Güting R., “Polynomials with multiple zeros”, Mathematika, 14 (1967), 181–196 | DOI | MR | Zbl

[15] Krattenthaler C., “Advanced determinant calculus”, Sémin. Lothar. Comb., 42 (1999), Art. B42g, 67 pp., (electronic) | MR

[16] Mahler K., “An inequality for the discriminant of a polynomial”, Michigan Math. J., 11 (1964), 257–262 | DOI | MR | Zbl

[17] Marden M., The geometry of the zeros of a polynomial in a complex variable, Mathematical Surveys, 3, Amer. Math. Soc., New York, 1949, 183 pp. | MR | Zbl

[18] Mignotte M., “On the distance between the roots of a polynomial”, Appl. Algebra Engng. Comm. Comput., 6:6 (1995), 327–332 | DOI | MR | Zbl

[19] Narkiewicz W., Elementary and analytic theory of algebraic numbers, Springer Monographs in Math., Springer-Verlag, Berlin, 2004, 708 pp. | DOI | MR | Zbl

[20] Schinzel A., Polynomials with special regard to reducibility, Enciclopedia of Math. and its Appl., 77, Cambridge Univ. Press, Cambridge, 2000, 558 pp. | MR | Zbl

[21] Schönhage A., “Polynomial root separation examples”, J. Symbolic Comput., 41:10 (2006), 1080–1090 | DOI | MR | Zbl

[22] Uherka D. J., Sergot A. M., “On the continuous dependence of the roots of a polynomial on its coefficients”, Amer. Math. Monthly, 84:5 (1977), 368–370 | DOI | MR | Zbl