Rescalings at possible singularities of Navier--Stokes equations in half-space
Algebra i analiz, Tome 25 (2013) no. 5, pp. 146-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relationship is clarified between possible blow-up for strong solutions of the initial boundary value problem for the incompressible Navier–Stokes equations in $\{x_3>0\}$, and the Liouville theorem for mild bounded ancient solutions.
Keywords: incompressible Navier–Stokes equations, blow-up, mild bounded ancient solution.
@article{AA_2013_25_5_a4,
     author = {G. Seregin and V. \v{S}ver\'ak},
     title = {Rescalings at possible singularities of {Navier--Stokes} equations in half-space},
     journal = {Algebra i analiz},
     pages = {146--172},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_5_a4/}
}
TY  - JOUR
AU  - G. Seregin
AU  - V. Šverák
TI  - Rescalings at possible singularities of Navier--Stokes equations in half-space
JO  - Algebra i analiz
PY  - 2013
SP  - 146
EP  - 172
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_5_a4/
LA  - en
ID  - AA_2013_25_5_a4
ER  - 
%0 Journal Article
%A G. Seregin
%A V. Šverák
%T Rescalings at possible singularities of Navier--Stokes equations in half-space
%J Algebra i analiz
%D 2013
%P 146-172
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_5_a4/
%G en
%F AA_2013_25_5_a4
G. Seregin; V. Šverák. Rescalings at possible singularities of Navier--Stokes equations in half-space. Algebra i analiz, Tome 25 (2013) no. 5, pp. 146-172. http://geodesic.mathdoc.fr/item/AA_2013_25_5_a4/

[1] Caffarelli L., Kohn R.-V., Nirenberg L., “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35:6 (1982), 771–831 | DOI | MR | Zbl

[2] Heywood J. G., “The Navier–Stokes equations: on the existence, regularity and decay of solutions”, Indiana Univ. Math. J., 29:5 (1980), 639–681 | DOI | MR | Zbl

[3] Jia H., Seregin G., Šverák V., “Liouville theorems in unbounded domains for the time-dependent Stokes system”, J. Math. Phys., 53 (2012), 115604 ; arXiv: 1201.1664v1 | DOI | MR | Zbl

[4] Jia H., Seregin G., Šverák V., “A Liouville theorem for the Stokes system in half-plain”, Zap. nauch. semin. POMI, 410, 2013, 25–35 | MR

[5] Kiselev A. A., Ladyzhenskaya O. A., “O suschestvovanii i edinstvennosti resheniya nestatsionarnoi zadachi dlya vyazkoi neszhimaemoi zhidkosti”, Izv. AN SSSR. Ser. mat., 21:5 (1957), 655–680 | MR | Zbl

[6] Koch G., Nadirashvili N., Seregin G., Šverák V., “Liouville theorems for the Navier–Stokes equations and applications”, Acta Math., 203:1 (2009), 83–105 | DOI | MR | Zbl

[7] Koch H., Solonnikov V. A., “$L_p$-estimates for a solution to the nonstationary Stokes equations”, Function theory and phase transitions, J. Math. Sci. (N.Y.), 106, no. 3, 2001, 3042–3072 | DOI | MR

[8] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[9] Leray J., “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl

[10] Seregin G. A., “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl

[11] Seregin G. A., “Zametka o lokalnoi granichnoi regulyarnosti reshenii sistemy Stoksa”, Zap. nauch. semin. POMI, 370, 2009, 151–159

[12] Seregin G., Šverák V., “On type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations”, Comm. Partial Differential Equations, 34:1–3 (2009), 171–201 | DOI | MR | Zbl

[13] Solonnikov V. A., “Otsenki reshenii nestatsionarnoi sistemy Nave–Stoksa”, Zap. nauch. semin. LOMI, 38, 1973, 153–231 | MR | Zbl

[14] Solonnikov V. A., “On nonstationary Stokes problem and Navier–Stokes problem in a half space with initial data nondecreasing at infinity”, J. of Mat. Sci. (N.Y.), 114:5 (2003), 1726–1740 | DOI | MR | Zbl

[15] Solonnikov V. A., “Ob otsenkakh reshenii nestatsionarnoi zadachi Stoksa v anizotropnykh prostranstvakh S. L. Soboleva i ob otsenkakh rezolventy operatora Stoksa”, Uspekhi mat. nauk, 58:2 (2003), 123–156 | DOI | MR | Zbl

[16] Stein Elias, Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl