Characterization of cyclic Schur groups
Algebra i analiz, Tome 25 (2013) no. 5, pp. 61-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite group $G$ is called a Schur group if any Schur ring over $G$ is associated in a natural way with a subgroup of $\mathrm{Sym}(G)$ that contains all right translations. It was proved by R. Pöschel (1974) that, given a prime $p\ge5$, a $p$-group is Schur if and only if it is cyclic. We prove that a cyclic group of order $n$ is Schur if and only if $n$ belongs to one of the following five families of integers: $p^k$, $pq^k$, $2pq^k$, $pqr$, $2pqr$ where $p,q,r$ are distinct primes, and $k\ge0$ is an integer.
Keywords: Schur ring, Schur group, permutation group, circulant cyclotomic S-ring, generalized wreath product.
@article{AA_2013_25_5_a2,
     author = {S. Evdokimov and I. Kov\'acs and I. Ponomarenko},
     title = {Characterization of cyclic {Schur} groups},
     journal = {Algebra i analiz},
     pages = {61--85},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_5_a2/}
}
TY  - JOUR
AU  - S. Evdokimov
AU  - I. Kovács
AU  - I. Ponomarenko
TI  - Characterization of cyclic Schur groups
JO  - Algebra i analiz
PY  - 2013
SP  - 61
EP  - 85
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_5_a2/
LA  - en
ID  - AA_2013_25_5_a2
ER  - 
%0 Journal Article
%A S. Evdokimov
%A I. Kovács
%A I. Ponomarenko
%T Characterization of cyclic Schur groups
%J Algebra i analiz
%D 2013
%P 61-85
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_5_a2/
%G en
%F AA_2013_25_5_a2
S. Evdokimov; I. Kovács; I. Ponomarenko. Characterization of cyclic Schur groups. Algebra i analiz, Tome 25 (2013) no. 5, pp. 61-85. http://geodesic.mathdoc.fr/item/AA_2013_25_5_a2/

[1] Evdokimov S., Ponomarenko I., “Ob odnom semeistve kolets Shura nad konechnoi tsiklicheskoi gruppoi”, Algebra i analiz, 13:3 (2001), 139–154 | MR | Zbl

[2] Evdokimov S., Ponomarenko I., “Kharakterizatsiya tsiklotomicheskikh skhem i normalnye koltsa Shura nad tsiklicheskoi gruppoi”, Algebra i analiz, 14:2 (2002), 11–55 | MR | Zbl

[3] Evdokimov S., Ponomarenko I., “Shurovost S-kolets nad tsiklicheskoi gruppoi i obobschennoe spletenie grupp perestanovok”, Algebra i analiz, 24:3 (2012), 84–127 | MR | Zbl

[4] Klin M. Kh., Pöschel R., “The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings”, Algebraic methods in graph theory (Szeged, 1978), v. I, II, Colloq. Math. Soc. János Bolyai, 25, North-Holland, Amsterdam–New York, 1981, 405–434 | MR

[5] Kovács I., “A construction of the automorphism groups of indecomposable S-rings over $\mathbb Z_{2^n}$”, Beitr. Algebra Geom., 52:1 (2011), 83–103 | DOI | MR | Zbl

[6] Leung K. H., Man S. H., “On Schur rings over cyclic groups. II”, J. Algebra, 183:2 (1996), 273–285 | DOI | MR | Zbl

[7] Pöschel R., “Untersuchungen von S-Ringen insbesondere im Gruppenring von $p$-Gruppen”, Math. Nachr., 60 (1974), 1–27 | DOI | MR | Zbl

[8] Schur I., “Zur Theorie der einfach transitiven Permutationgruppen”, S.-B. Preus Akad. Wiss. Phys.-Math. Kl., 1933, no. 18–20, 598–623, Berlin | Zbl

[9] Wielandt H., Finite permutation groups, Acad. Press, New York–London, 1964 | MR | Zbl