Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_5_a2, author = {S. Evdokimov and I. Kov\'acs and I. Ponomarenko}, title = {Characterization of cyclic {Schur} groups}, journal = {Algebra i analiz}, pages = {61--85}, publisher = {mathdoc}, volume = {25}, number = {5}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2013_25_5_a2/} }
S. Evdokimov; I. Kovács; I. Ponomarenko. Characterization of cyclic Schur groups. Algebra i analiz, Tome 25 (2013) no. 5, pp. 61-85. http://geodesic.mathdoc.fr/item/AA_2013_25_5_a2/
[1] Evdokimov S., Ponomarenko I., “Ob odnom semeistve kolets Shura nad konechnoi tsiklicheskoi gruppoi”, Algebra i analiz, 13:3 (2001), 139–154 | MR | Zbl
[2] Evdokimov S., Ponomarenko I., “Kharakterizatsiya tsiklotomicheskikh skhem i normalnye koltsa Shura nad tsiklicheskoi gruppoi”, Algebra i analiz, 14:2 (2002), 11–55 | MR | Zbl
[3] Evdokimov S., Ponomarenko I., “Shurovost S-kolets nad tsiklicheskoi gruppoi i obobschennoe spletenie grupp perestanovok”, Algebra i analiz, 24:3 (2012), 84–127 | MR | Zbl
[4] Klin M. Kh., Pöschel R., “The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings”, Algebraic methods in graph theory (Szeged, 1978), v. I, II, Colloq. Math. Soc. János Bolyai, 25, North-Holland, Amsterdam–New York, 1981, 405–434 | MR
[5] Kovács I., “A construction of the automorphism groups of indecomposable S-rings over $\mathbb Z_{2^n}$”, Beitr. Algebra Geom., 52:1 (2011), 83–103 | DOI | MR | Zbl
[6] Leung K. H., Man S. H., “On Schur rings over cyclic groups. II”, J. Algebra, 183:2 (1996), 273–285 | DOI | MR | Zbl
[7] Pöschel R., “Untersuchungen von S-Ringen insbesondere im Gruppenring von $p$-Gruppen”, Math. Nachr., 60 (1974), 1–27 | DOI | MR | Zbl
[8] Schur I., “Zur Theorie der einfach transitiven Permutationgruppen”, S.-B. Preus Akad. Wiss. Phys.-Math. Kl., 1933, no. 18–20, 598–623, Berlin | Zbl
[9] Wielandt H., Finite permutation groups, Acad. Press, New York–London, 1964 | MR | Zbl