On the spectrum of elliptic operators with distant perturbation in the space
Algebra i analiz, Tome 25 (2013) no. 5, pp. 32-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2013_25_5_a1,
     author = {A. M. Golovina},
     title = {On the spectrum of elliptic operators with distant perturbation in the space},
     journal = {Algebra i analiz},
     pages = {32--60},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_5_a1/}
}
TY  - JOUR
AU  - A. M. Golovina
TI  - On the spectrum of elliptic operators with distant perturbation in the space
JO  - Algebra i analiz
PY  - 2013
SP  - 32
EP  - 60
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_5_a1/
LA  - ru
ID  - AA_2013_25_5_a1
ER  - 
%0 Journal Article
%A A. M. Golovina
%T On the spectrum of elliptic operators with distant perturbation in the space
%J Algebra i analiz
%D 2013
%P 32-60
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_5_a1/
%G ru
%F AA_2013_25_5_a1
A. M. Golovina. On the spectrum of elliptic operators with distant perturbation in the space. Algebra i analiz, Tome 25 (2013) no. 5, pp. 32-60. http://geodesic.mathdoc.fr/item/AA_2013_25_5_a1/

[1] Borisov D. I., “Asymtotic behaviour of the spectrum of a waveguide with distant perturbation”, Math. Phys. Anal. Geom., 10:2 (2007), 155–196 | DOI | MR | Zbl

[2] Borisov D. I., Exner P., “Exponential splitting of bound in a waveguide with a pair of distant windows”, J. Phys. A, 37:10 (2004), 3411–3428 | DOI | MR | Zbl

[3] Borisov D. I., “Distant perturbation of the Laplacian in a multi-dimensional space”, Ann. Inst. H. Poincaré, 8:7 (2007), 1371–1399 | DOI | MR | Zbl

[4] Davies E. B., “The twisting trick for double well Hamiltonians”, Comm. Math. Phys., 85:3 (1982), 471–479 | DOI | MR | Zbl

[5] Harrell E. M., “Double wells”, Comm. Math. Phys., 75:3 (1980), 239–261 | DOI | MR | Zbl

[6] Hoegh-Krohn R., Mebkhout M., “The multiple well problem asymptotic behavior of the eigenvalues and resonances”, Trends and developments in the eightes (Bielefeld, 1982/83), World Sci. Publ., Singapore, 1985, 244–272 | MR

[7] Tamura H., “Existense of bound states for double well potentials and the Efimov effect”, Functional-analytic methods for partial differential equations (Tokyo, 1989), Lecture notes in Math., 1450, Springer, Berlin, 1990, 173–186 | DOI | MR

[8] Aktosun T., Klaus M., C. van der Mee, “On the number of bound states for the one-dimensional Schrödinger equation”, J. Math. Phys., 39:9 (1998), 4249–4256 | DOI | MR | Zbl

[9] Morgan J. D. III, Simon B., “Behavior of molecular potential energy curves for large nuclear separations”, Intern. J. Quantum Chemistry, 17:2 (1980), 1143–1166 | DOI

[10] Graffi S., Grecel V., Harrell E. V. II, Silverstone H. J., “The $\frac1R$-expansion for $H_2^+$: analyticity, summability and asymptotics”, Ann. Phys., 165:2 (1985), 441–483 | DOI | MR | Zbl

[11] Ahlrichs R., “Convergence properties of the intermolecular Force series $(\frac1R$-expansion)”, Theor. Chemica Acta, 41:1 (1976), 17–15 | DOI

[12] Klaus M., “Some remarks on double-wells in one and three dimensions”, Ann. Inst. H. Poincaré Sect. A, 34:4 (1981), 405–417 | MR | Zbl

[13] Klaus M., Simon B., “Binding of Schrödinger particles through conspiracy of potential wells”, Ann. Inst. H. Poincaré Sect. A, 30:2 (1979), 83–87 | MR

[14] Pinchover Y., “On the localization of binding for Schrödinger operators and its extension to elliptic operators”, J. Anal. Math., 66 (1995), 57–83 | DOI | MR | Zbl

[15] Harrell E. M., Klaus M., “On the double-well problem for Dirac operators”, Ann. Inst. H. Poincaré, 38:2 (1983), 153–166 | MR | Zbl

[16] Reity O. K., “Asymptotic expansions of the potential curves of the relativistic quantum-mechanical two-Coulomb-center promlem”, Symmetry in nonlinear mathematical physics, Part 1, 2 (Kyiv, 2001), Pr. Inst. Math. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Part 1, 2, Natsional. Akad. Nauk Ukraini, Inst. Mat., Kiev, 2002, 672–675 | MR | Zbl

[17] Kondej S., Veselić I., “Lower bound on the lowest spectral gap of singular potential Hamiltonians”, Ann. Inst. H. Poincaré, 8:1 (2007), 109–134 | DOI | MR | Zbl

[18] Borisov D. I., “O spektre dvumernogo periodicheskogo operatora s malym lokalizovannym vozmuscheniem”, Izv. RAN. Ser. mat., 75:2 (2011), 29–64 | DOI | MR | Zbl

[19] Golovina A. M., “On the resolvent of elliptic operators with distant perturbations in the space”, Rus. J. Math. Phys., 19:2 (2012), 182–192 | DOI | MR | Zbl

[20] Golovina A. M., “Rezolventy operatorov s razbegayuschimisya vozmuscheniyami”, Mat. zametki, 91:3 (2012), 464–466 | DOI | Zbl

[21] Gadylshin R. R., “O lokalnykh vozmuscheniyakh operatora Shrëdingera na osi”, Teor. i mat. fiz., 132:1 (2002), 97–104 | DOI | MR | Zbl

[22] Borisov D. I., “Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom”, Mat. sb., 197:4 (2006), 3–32 | DOI | MR | Zbl

[23] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17 (1964), 35–92 | DOI | MR | Zbl

[24] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[25] Markushevich A. I., Teoriya analiticheskikh funktsii, Nauka, M., 1968 | Zbl