Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_4_a7, author = {H. Nozaki and M. Sawa}, title = {Remarks on {Hilbert} identities, isometric embeddings, and invariant cubature}, journal = {Algebra i analiz}, pages = {139--181}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2013_25_4_a7/} }
H. Nozaki; M. Sawa. Remarks on Hilbert identities, isometric embeddings, and invariant cubature. Algebra i analiz, Tome 25 (2013) no. 4, pp. 139-181. http://geodesic.mathdoc.fr/item/AA_2013_25_4_a7/
[1] Bajnok B., “Orbits of the hyperoctahedral group as Euclidean designs”, J. Algebraic. Comb., 25:4 (2007), 375–397 | DOI | MR | Zbl
[2] Bannai Ei., Bannai Etsu., “Tight Gaussian $4$-designs”, J. Algebraic. Comb., 22:1 (2005), 39–63 | DOI | MR | Zbl
[3] Bannai Ei., Damerell R. M., “Tight spherical designs. II”, J. London Math. Soc. (2), 21:1 (1980), 13–30 | DOI | MR | Zbl
[4] Bourbaki N., Lie Groups and Lie Algebras, Chapters 4–6 (Elements of Mathematics), Springer-Verlag, Berlin, 2002 | MR | Zbl
[5] Delsarte P., Goethals J. M., Seidel J. J., “Spherical codes and designs”, Geom. Dedicata, 6:3 (1977), 363–388 | DOI | MR | Zbl
[6] Dickson L. E., History of the theory of numbers, v. II, Carnegie Institution of Washington, 1923 | Zbl
[7] Ellison W. J., “Waring's problem”, Amer. Math. Monthly, 78:1 (1971), 10–35 | DOI | MR
[8] Fuji-Hara R., Kuriki S., Jimbo M., “On balanced complementation for regular $t$-wise balanced designs”, Discrete Math., 76:1 (1989), 29–35 | DOI | MR | Zbl
[9] Goethals J. M., Seidel J. J., “Cubature formulae, polytopes, and spherical designs”, The geometric vein, Springer, New York–Berlin, 1981, 203–218 | DOI | MR
[10] Gupta S. C., Jones B., “Equireplicate balanced block designs and unequal block sizes”, Biometrika, 70:2 (1983), 433–440 | DOI | MR | Zbl
[11] Hardin R. H., Sloane N. J. A., “Expressing $(a^2+b^2+c^2+d^2)^3$ as a sum of $23$ sixth powers”, J. Combin. Theory Ser. A, 68:2 (1994), 481–485 | DOI | MR | Zbl
[12] Hardin R. H., Sloane N. J. A., “McLaren's improved snub cube and other new spherical designs in three dimensions”, Discrete Comput. Geom., 15:4 (1996), 429–441 | DOI | MR | Zbl
[13] de la Harpe P., Pache C., Venkov B., “Construction of spherical cubature formulas using lattices”, Algebra i analiz, 18:1 (2006), 162–186 | MR | Zbl
[14] de la Harpe P., Pache C., “Cubature formulas, geometrical designs, reproducing kernels, and Markov operators”, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., 248, Birkhauser, Basel, 2005, 219–267 | DOI | MR | Zbl
[15] Hedayat A. S., Sloane N. J. A., Stufken J., Orthogonal arrays. Theory and applications, Springer Series in Statistics, Springer-Verlag, New York, 1999 | DOI | MR | Zbl
[16] Hilbert D., “Beweis für die darstellbarkeit der ganzen zahlen durch eine feste anzahl $n$-ter potenzen (Waringsches problem)”, Math. Ann., 67:3 (1909), 281–300 | DOI | MR | Zbl
[17] Ionin Y. J., Trung T., “Symmetric designs”, Handbook of Combinatorial Designs, 2nd ed., eds. C. J. Colbourn, J. H. Dinitz, CRC Press, Boca Raton, USA, 2007, 110–124 | MR
[18] Kageyama S., Majumdar D., “Resistant BTIB designs”, Comm. Statist. Theory Methods, 19:6 (1990), 2145–2158 | DOI | MR
[19] Khosrovshahi G. B., Laue R., “$t$-Designs with $t\ge3$”, Handbook of Combinatorial Designs, 2nd ed., eds. C. J. Colbourn, J. H. Dinitz, CRC Press, Boca Raton, USA, 2007, 79–101 | MR
[20] König H., “Isometric imbeddings of Euclidean spaces into finite-dimensional $l_p$-spaces”, Panoramas of Mathematics (Warsaw, 1992/1994), Banach Center Publ., 34, Polish Acad. Sci., Warsaw, 1995, 79–87 | MR | Zbl
[21] Lyons T., Victoir N., “Cubature on Wiener space. Stochastic analysis with applications to mathematical finance”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460:2041 (2004), 169–198 | DOI | MR | Zbl
[22] Lyubich Y. I., Vaserstein L. N., “Isometric embeddings between classical Banach spaces, cubature formulas, and spherical designs”, Geom. Dedicata, 47:3 (1993), 327–362 | DOI | MR | Zbl
[23] Neumaier A., Seidel J. J., “Discrete measures for spherical designs, eutactic stars and lattices”, Nederl. Akad. Wetensch. Indag. Math., 50:3 (1988), 321–334 | DOI | MR | Zbl
[24] Nozaki H., Sawa M., “Note on cubature formulae and designs obtained from group orbits”, Canad. J. Math., 64:6 (2012), 1359–1377 | DOI | MR | Zbl
[25] Reznick B., “On the length of binary forms”, Developments in Math., 31, Springer, New York, 2013, 207–232; arXiv: 1007.5485
[26] Reznick B., “Some constructions of spherical $5$-designs”, Linear Algebra Appl., 226/228 (1995), 163–196 | DOI | MR | Zbl
[27] Reznick B., Sums of even powers of real linear forms, Mem. Amer. Math. Soc., 96, no. 463, 1992, 155 pp. | MR | Zbl
[28] Salikhov G. N., “Kubaturnye formuly dlya gipersfery, invariantnye otnositelno gruppy pravilnogo $600$-grannika”, Dokl. AN SSSR, 223:5 (1975), 1075–1078 | MR
[29] Sawa M., Xu Y., “On positive cubature rules on the simplex and isometric embeddings”, Math. Comp. (to appear)
[30] Schmid J., “On totally positive units of real holomorphy rings”, Israel J. Math., 85:1–3 (1994), 339–350 | DOI | MR | Zbl
[31] Seidel J. J., “Isometric embeddings and geometric designs”, Discrete Math., 136:1–3 (1994), 281–293 | DOI | MR | Zbl
[32] Shatalov O., Isometric embeddings $l_2^m\to l_p^n$ and cubature formulas over classical fields, Doctor Thesis, Technion-Israel Inst. Technology, Haifa, Israel, 2001
[33] Sobolev S. L., “O kubaturnykh formulakh na sfere, invariantnykh pri preobrazovaniyakh konechnykh grupp vrascheniya”, Dokl. AN SSSR, 146:2 (1962), 310–313 | MR | Zbl
[34] Stroud A. H., Approximate calculation of multiple integrals, Prentice-Hall, Englewood Cliffs, NJ, 1971 | MR | Zbl
[35] Victoir N., “Asymmetric cubature formulae with few points in high dimension for symmetric measures”, SIAM J. Numer. Anal., 42:1 (2004), 209–227, (electronic) | DOI | MR | Zbl
[36] Woodal W. G., “Square $\lambda$-linked designs”, Proc. London Math. Soc., 20 (1970), 669–687 | DOI | MR | Zbl
[37] Xiang Z., “A Fisher type inequality for weighted regular $t$-wise balanced designs”, J. Combin. Theory Ser. A, 119:7 (2012), 1523–1527 | DOI | MR | Zbl
[38] Xu Y., “Minimal cubature formulae for a family of radial weight functions”, Adv. Comput. Math., 8:4 (1998), 367–380 | DOI | MR | Zbl
[39] Xu Y., “Orthogonal polynomials and cubature formulae on spheres and on simplices”, Methods Appl. Anal., 5:2 (1998), 169–184 | MR | Zbl