Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_4_a6, author = {K. Nagy}, title = {Almost everywhere convergence of cone-like restricted two-dimensional {Fej\'er} means with respect to {Vilenkin-like} systems}, journal = {Algebra i analiz}, pages = {125--138}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2013_25_4_a6/} }
TY - JOUR AU - K. Nagy TI - Almost everywhere convergence of cone-like restricted two-dimensional Fej\'er means with respect to Vilenkin-like systems JO - Algebra i analiz PY - 2013 SP - 125 EP - 138 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2013_25_4_a6/ LA - en ID - AA_2013_25_4_a6 ER -
K. Nagy. Almost everywhere convergence of cone-like restricted two-dimensional Fej\'er means with respect to Vilenkin-like systems. Algebra i analiz, Tome 25 (2013) no. 4, pp. 125-138. http://geodesic.mathdoc.fr/item/AA_2013_25_4_a6/
[1] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981 | MR
[2] Gát G., “Pointwise convergencve of the Cesàro means of double Walsh series”, Ann. Univ. Sci. Budapest, Sect. Comput., 16 (1996), 173–184 | MR | Zbl
[3] Gát G., “On the divergence of the $(C,1)$ means of double Walsh series”, Proc. Amer. Math. Soc., 128:6 (1996), 1711–1720 | DOI | MR
[4] Gát G., “Pointwise convergence of cone-like restricted two-dimensional $(C,1)$ means of trigonometric Fourier series”, J. of Approx. Theory, 149:1 (2007), 74–102 | DOI | MR | Zbl
[5] Gát G., “On $(C,1)$ summability for Vilenkin-like systems”, Studia Mathematica, 144:2 (2001), 101–120 | DOI | MR | Zbl
[6] Gát G., Nagy K., “Pointwise convergence of cone-like restricted two-dimensional Fejér means of Walsh–Fourier series”, Acta Math. Sin. (Engl. Ser.), 26:12 (2010), 2295–2304 | DOI | MR | Zbl
[7] Gát G., Toledo R., “On the convergence in $L^1$-norm of Cesàro means with respect to representative product systems”, Acta Math. Hungar., 123:1–2 (2009), 103–120 | DOI | MR | Zbl
[8] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primenenie, Nauka, M., 1987 | MR | Zbl
[9] Jessen B., Marcinkiewicz J., Zygmund A., “Note on the differentiability of multiple integrals”, Found. Math., 25 (1935), 217–234 | Zbl
[10] Marcinkiewicz J., Zygmund A., “On the summability of double Fourier series”, Found. Math., 32 (1939), 112–139 | Zbl
[11] Móricz F., Schipp F., Wade W. R., “Cesàro summability of double Walsh-Fourier series”, Trans. Amer. Math. Soc., 329:1 (1992), 131–140 | MR | Zbl
[12] Schipp F., Wade W. R., Simon P., Pál J., Walsh Series. An Introduction to dyadic harmonic analysis, Adam Hilger, Ltd., Bristol, 1990 | MR | Zbl
[13] Schipp F., “Universal contractive projections and a.e. convergence”, Probability theory and applications, Math. Appl., 80, Kluwer Acad. Publ., Dordrecht, 1992, 221–223 | MR
[14] Schipp F., Wade W. R., “Norm convergence and summability of Fourier series with respect to certain product systems”, Approximation theory (Memphis, NV, 1991), Lecture Notes in Pure and Appl. Math., 138, Dekker, New York, 1992, 437–452 | MR
[15] Taibleson M. H., Fourier analysis on local fields, Priceton Univ. Press, Princeton, NJ, 1975 | MR | Zbl
[16] Weisz F., “Cesàro summability of two-dimensional Walsh-Fourier series”, Trans. Amer. Math. Soc., 348:6 (1996), 2169–2181 | DOI | MR | Zbl
[17] Weisz F., Summability of multi-dimensional Fourier series and Hardy spaces, Mathematics and its Applications, 541, Kluwer Acad. Publ., Dordrecht, 2002 | MR