Almost everywhere convergence of cone-like restricted two-dimensional Fej\'er means with respect to Vilenkin-like systems
Algebra i analiz, Tome 25 (2013) no. 4, pp. 125-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the two-dimensional Walsh system, Gát and Weisz proved the a.e. convergence of the Fejér means $\sigma_nf$ of integrable functions, where the set of indices is inside a positive cone around the identical function, that is, $\beta^{-1}\leq n_1/n_2\leq\beta$ is ensured with some fixed parameter $\beta\geq1$. The result of Gát and Weisz was generalized by Gát and the author in the way that the indices are inside a cone-like set. In the present paper, the a.e. convergence is proved for the Fejér means of integrable functions with respect to two-dimensional Vilenkin-like systems provided that the set of indeces is in a cone-like set. That is, the result of Gát and the author is generalized to a general orthonormal system, which contains as special cases the Walsh system, the Vilenkin system, the character system of the group of 2-adic integers, the UDMD system, and the representative product system of CTD (compact totally disconnected) groups.
Keywords: Vilenkin group, Vilenkin system, pointwise convergence, Fejér means, orthonormal systems, two-dimensional Fourier series, compact totally disconnected group.
@article{AA_2013_25_4_a6,
     author = {K. Nagy},
     title = {Almost everywhere convergence of cone-like restricted two-dimensional {Fej\'er} means with respect to {Vilenkin-like} systems},
     journal = {Algebra i analiz},
     pages = {125--138},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_4_a6/}
}
TY  - JOUR
AU  - K. Nagy
TI  - Almost everywhere convergence of cone-like restricted two-dimensional Fej\'er means with respect to Vilenkin-like systems
JO  - Algebra i analiz
PY  - 2013
SP  - 125
EP  - 138
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_4_a6/
LA  - en
ID  - AA_2013_25_4_a6
ER  - 
%0 Journal Article
%A K. Nagy
%T Almost everywhere convergence of cone-like restricted two-dimensional Fej\'er means with respect to Vilenkin-like systems
%J Algebra i analiz
%D 2013
%P 125-138
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_4_a6/
%G en
%F AA_2013_25_4_a6
K. Nagy. Almost everywhere convergence of cone-like restricted two-dimensional Fej\'er means with respect to Vilenkin-like systems. Algebra i analiz, Tome 25 (2013) no. 4, pp. 125-138. http://geodesic.mathdoc.fr/item/AA_2013_25_4_a6/

[1] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981 | MR

[2] Gát G., “Pointwise convergencve of the Cesàro means of double Walsh series”, Ann. Univ. Sci. Budapest, Sect. Comput., 16 (1996), 173–184 | MR | Zbl

[3] Gát G., “On the divergence of the $(C,1)$ means of double Walsh series”, Proc. Amer. Math. Soc., 128:6 (1996), 1711–1720 | DOI | MR

[4] Gát G., “Pointwise convergence of cone-like restricted two-dimensional $(C,1)$ means of trigonometric Fourier series”, J. of Approx. Theory, 149:1 (2007), 74–102 | DOI | MR | Zbl

[5] Gát G., “On $(C,1)$ summability for Vilenkin-like systems”, Studia Mathematica, 144:2 (2001), 101–120 | DOI | MR | Zbl

[6] Gát G., Nagy K., “Pointwise convergence of cone-like restricted two-dimensional Fejér means of Walsh–Fourier series”, Acta Math. Sin. (Engl. Ser.), 26:12 (2010), 2295–2304 | DOI | MR | Zbl

[7] Gát G., Toledo R., “On the convergence in $L^1$-norm of Cesàro means with respect to representative product systems”, Acta Math. Hungar., 123:1–2 (2009), 103–120 | DOI | MR | Zbl

[8] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primenenie, Nauka, M., 1987 | MR | Zbl

[9] Jessen B., Marcinkiewicz J., Zygmund A., “Note on the differentiability of multiple integrals”, Found. Math., 25 (1935), 217–234 | Zbl

[10] Marcinkiewicz J., Zygmund A., “On the summability of double Fourier series”, Found. Math., 32 (1939), 112–139 | Zbl

[11] Móricz F., Schipp F., Wade W. R., “Cesàro summability of double Walsh-Fourier series”, Trans. Amer. Math. Soc., 329:1 (1992), 131–140 | MR | Zbl

[12] Schipp F., Wade W. R., Simon P., Pál J., Walsh Series. An Introduction to dyadic harmonic analysis, Adam Hilger, Ltd., Bristol, 1990 | MR | Zbl

[13] Schipp F., “Universal contractive projections and a.e. convergence”, Probability theory and applications, Math. Appl., 80, Kluwer Acad. Publ., Dordrecht, 1992, 221–223 | MR

[14] Schipp F., Wade W. R., “Norm convergence and summability of Fourier series with respect to certain product systems”, Approximation theory (Memphis, NV, 1991), Lecture Notes in Pure and Appl. Math., 138, Dekker, New York, 1992, 437–452 | MR

[15] Taibleson M. H., Fourier analysis on local fields, Priceton Univ. Press, Princeton, NJ, 1975 | MR | Zbl

[16] Weisz F., “Cesàro summability of two-dimensional Walsh-Fourier series”, Trans. Amer. Math. Soc., 348:6 (1996), 2169–2181 | DOI | MR | Zbl

[17] Weisz F., Summability of multi-dimensional Fourier series and Hardy spaces, Mathematics and its Applications, 541, Kluwer Acad. Publ., Dordrecht, 2002 | MR