The boundary behavior and the Dirichlet problem for the Beltrami equations
Algebra i analiz, Tome 25 (2013) no. 4, pp. 101-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2013_25_4_a5,
     author = {D. A. Kovtonyuk and I. V. Petkov and V. I. Ryazanov and R. R. Salimov},
     title = {The boundary behavior and the {Dirichlet} problem for the {Beltrami} equations},
     journal = {Algebra i analiz},
     pages = {101--124},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_4_a5/}
}
TY  - JOUR
AU  - D. A. Kovtonyuk
AU  - I. V. Petkov
AU  - V. I. Ryazanov
AU  - R. R. Salimov
TI  - The boundary behavior and the Dirichlet problem for the Beltrami equations
JO  - Algebra i analiz
PY  - 2013
SP  - 101
EP  - 124
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_4_a5/
LA  - ru
ID  - AA_2013_25_4_a5
ER  - 
%0 Journal Article
%A D. A. Kovtonyuk
%A I. V. Petkov
%A V. I. Ryazanov
%A R. R. Salimov
%T The boundary behavior and the Dirichlet problem for the Beltrami equations
%J Algebra i analiz
%D 2013
%P 101-124
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_4_a5/
%G ru
%F AA_2013_25_4_a5
D. A. Kovtonyuk; I. V. Petkov; V. I. Ryazanov; R. R. Salimov. The boundary behavior and the Dirichlet problem for the Beltrami equations. Algebra i analiz, Tome 25 (2013) no. 4, pp. 101-124. http://geodesic.mathdoc.fr/item/AA_2013_25_4_a5/

[1] Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E., The Beltrami equations: A geometric approach, Developments in Math., 26, Springer, New York etc, 2012 | DOI | MR | Zbl

[2] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in modern mapping theory, Springer Monographs in Mathematics, Springer, New York, 2009 | MR | Zbl

[3] Afanaseva E. S., Ryazanov V. I., Salimov R. R., “Ob otobrazheniyakh v klassakh Orlicha–Soboleva na rimanovykh mnogoobraziyakh”, Ukr. mat. vestnik, 8:3 (2011), 319–342 | MR

[4] Ignatev A. A., Ryazanov V. I., “Konechnoe srednee kolebanie v teorii otobrazhenii”, Ukr. mat. vestnik, 2:3 (2005), 395–417 | MR

[5] Kovtonyuk D. A., Ryazanov V. I., “K teorii nizhnikh $Q$-gomeomorfizmov”, Ukr. mat. vestnik, 5:2 (2008), 159–184 | MR

[6] Kovtonyuk D. A., Petkov I. V., Ryazanov V. I., “O granichnom povedenii reshenii uravnenii Beltrami”, Ukr. mat. zh., 63:8 (2011), 1078–1091

[7] Lomako T. V., “O rasprostranenii nekotorykh obobschenii kvazikonformnykh otobrazhenii na granitsu”, Ukr. mat. zh., 61:10 (2009), 1329–1337 | MR | Zbl

[8] Ryazanov V. I., Sevostyanov E. A., “Ravnostepenno nepreryvnye klassy koltsevykh $Q$-gomeomorfizmov”, Sib. mat. zh., 48:6 (2007), 1361–1376 | MR | Zbl

[9] Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E., “On recent advances in the degenerate Beltrami equations”, Ukr. mat. vestnik, 7:4 (2010), 467–515 | MR

[10] Srebro U., Yakubov E., “The Beltrami equation”, Handbook in Complex Analysis: Geometric function theory, v. 2, Elseiver Sci. B. V., Amsterdam, 2005, 555–597 | DOI | MR | Zbl

[11] Boyarskii B. V., “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Mat. sb., 43(85):4 (1957), 451–503 | MR | Zbl

[12] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR | Zbl

[13] Dybov Yu., “On regular solutions of the Dirichlet problem for the Beltrami equations”, Complex Var. Elliptic Equ., 55:12 (2010), 1099–1116 | DOI | MR | Zbl

[14] Fuglede B., “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl

[15] Gehring F. W., “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103 (1962), 353–393 | DOI | MR | Zbl

[16] Wilder R. L., Topology of Manifolds, American Mathematical Society Coloquim Publications, 32, Amer. Math. Soc., New York, N.Y., 1949 | MR | Zbl

[17] Kovtonyuk D., Ryazanov V., “K teorii granits prostranstvennykh oblastei”, Tr. IPMM NAN Ukrainy, 13, 2006, 110–120 | MR | Zbl

[18] Martio O., Ryazanov V., Srebro U., Yakubov E., “$Q$-homeomorphisms”, Complex analysis and dynamical systems, Contemp. Math., 364, Amer. Math. Soc., Providence, RI, 2004, 193–203 | DOI | MR | Zbl

[19] Martio O., Ryazanov V., Srebro U., Yakubov E., “On $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 30 (2005), 49–69 | MR | Zbl

[20] Väisälä J., Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin etc, 1971 | MR

[21] Näkki R., “Boundary behavior of quasiconformal mappings in $n$-space”, Ann. Acad. Sci. Fenn. Ser. A1 Math., 484 (1970), 1–50 | MR

[22] Gehring F. W., Martio O., “Quasiextremal distance domains and extension of quasiconformal mappings”, J. Anal. Math., 45 (1985), 181–206 | DOI | MR | Zbl

[23] Martio O., Sarvas J., “Injectivity theorems in plane and space”, Ann. Acad. Sci. Fenn. Ser. A1 Math., 4:2 (1979), 383–401 | MR | Zbl

[24] Hurewicz W., Wallman H., Dimension theory, Princeton Univ. Press, Princeton, NJ, 1948 | MR | Zbl

[25] Federer H., Geometric Measure Theory, Grundlehren der Math. Wiss., 153, Springer-Verlag, New York, 1969 | MR | Zbl

[26] Gehring F. W., Lehto O., “On the total differentiability of functions of a complex variable”, Ann. Acad. Sci. Fenn. A1. Math., 272 (1959), 1–9 | MR

[27] Menchoff D., “Sur les differentielles totales des fonctions univalentes”, Math. Ann., 105:1 (1931), 75–85 | DOI | MR | Zbl

[28] Kovtonyuk D., Ryazanov V., “On the theory of mappings with finite area distortion”, J. Anal. Math., 104 (2008), 291–306 | DOI | MR

[29] Maz'ya V., Sobolev Spaces, Springer-Verlag, Berlin, 1985 | MR

[30] Ryazanov V., Srebro U., Yakubov E., “On ring solutions of Beltrami equation”, J. Anal. Math., 96 (2005), 117–150 | DOI | MR | Zbl

[31] Ryazanov V., Srebro U., Yakubov E., “Integral conditions in the mapping theory”, Ukr. mat. vestnik, 7:4 (2010), 73–87 | MR

[32] Ryazanov V., Srebro U., Yakubov E., “To strong ring solutions of the Beltrami equations”, Uzbek. Math. Zh., 2009, no. 1, 127–137 | MR

[33] Ryazanov V., Srebro U., Yakubov E., “On strong solutions of the Beltrami equations”, Complex Var. Elliptic Equ., 55:1–3 (2010), 219–236 | MR | Zbl

[34] Ryazanov V., Srebro U., Yakubov E., “Integral conditions in the theory of the Beltrami equations”, Complex Var. Elliptic Equ., 57:12 (2012), 1247–1270 | DOI | MR | Zbl

[35] Saks S., Teoriya integrala, IL, M., 1949, 495 pp.

[36] Ransford Th., Potential theory in the complex plane, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[37] Stoilov S., Lektsii o topologicheskikh printsipakh teorii analiticheskikh funktsii, Nauka, M., 1964 | MR

[38] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[39] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968 | MR