Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_4_a5, author = {D. A. Kovtonyuk and I. V. Petkov and V. I. Ryazanov and R. R. Salimov}, title = {The boundary behavior and the {Dirichlet} problem for the {Beltrami} equations}, journal = {Algebra i analiz}, pages = {101--124}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2013_25_4_a5/} }
TY - JOUR AU - D. A. Kovtonyuk AU - I. V. Petkov AU - V. I. Ryazanov AU - R. R. Salimov TI - The boundary behavior and the Dirichlet problem for the Beltrami equations JO - Algebra i analiz PY - 2013 SP - 101 EP - 124 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2013_25_4_a5/ LA - ru ID - AA_2013_25_4_a5 ER -
%0 Journal Article %A D. A. Kovtonyuk %A I. V. Petkov %A V. I. Ryazanov %A R. R. Salimov %T The boundary behavior and the Dirichlet problem for the Beltrami equations %J Algebra i analiz %D 2013 %P 101-124 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2013_25_4_a5/ %G ru %F AA_2013_25_4_a5
D. A. Kovtonyuk; I. V. Petkov; V. I. Ryazanov; R. R. Salimov. The boundary behavior and the Dirichlet problem for the Beltrami equations. Algebra i analiz, Tome 25 (2013) no. 4, pp. 101-124. http://geodesic.mathdoc.fr/item/AA_2013_25_4_a5/
[1] Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E., The Beltrami equations: A geometric approach, Developments in Math., 26, Springer, New York etc, 2012 | DOI | MR | Zbl
[2] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in modern mapping theory, Springer Monographs in Mathematics, Springer, New York, 2009 | MR | Zbl
[3] Afanaseva E. S., Ryazanov V. I., Salimov R. R., “Ob otobrazheniyakh v klassakh Orlicha–Soboleva na rimanovykh mnogoobraziyakh”, Ukr. mat. vestnik, 8:3 (2011), 319–342 | MR
[4] Ignatev A. A., Ryazanov V. I., “Konechnoe srednee kolebanie v teorii otobrazhenii”, Ukr. mat. vestnik, 2:3 (2005), 395–417 | MR
[5] Kovtonyuk D. A., Ryazanov V. I., “K teorii nizhnikh $Q$-gomeomorfizmov”, Ukr. mat. vestnik, 5:2 (2008), 159–184 | MR
[6] Kovtonyuk D. A., Petkov I. V., Ryazanov V. I., “O granichnom povedenii reshenii uravnenii Beltrami”, Ukr. mat. zh., 63:8 (2011), 1078–1091
[7] Lomako T. V., “O rasprostranenii nekotorykh obobschenii kvazikonformnykh otobrazhenii na granitsu”, Ukr. mat. zh., 61:10 (2009), 1329–1337 | MR | Zbl
[8] Ryazanov V. I., Sevostyanov E. A., “Ravnostepenno nepreryvnye klassy koltsevykh $Q$-gomeomorfizmov”, Sib. mat. zh., 48:6 (2007), 1361–1376 | MR | Zbl
[9] Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E., “On recent advances in the degenerate Beltrami equations”, Ukr. mat. vestnik, 7:4 (2010), 467–515 | MR
[10] Srebro U., Yakubov E., “The Beltrami equation”, Handbook in Complex Analysis: Geometric function theory, v. 2, Elseiver Sci. B. V., Amsterdam, 2005, 555–597 | DOI | MR | Zbl
[11] Boyarskii B. V., “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Mat. sb., 43(85):4 (1957), 451–503 | MR | Zbl
[12] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR | Zbl
[13] Dybov Yu., “On regular solutions of the Dirichlet problem for the Beltrami equations”, Complex Var. Elliptic Equ., 55:12 (2010), 1099–1116 | DOI | MR | Zbl
[14] Fuglede B., “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl
[15] Gehring F. W., “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103 (1962), 353–393 | DOI | MR | Zbl
[16] Wilder R. L., Topology of Manifolds, American Mathematical Society Coloquim Publications, 32, Amer. Math. Soc., New York, N.Y., 1949 | MR | Zbl
[17] Kovtonyuk D., Ryazanov V., “K teorii granits prostranstvennykh oblastei”, Tr. IPMM NAN Ukrainy, 13, 2006, 110–120 | MR | Zbl
[18] Martio O., Ryazanov V., Srebro U., Yakubov E., “$Q$-homeomorphisms”, Complex analysis and dynamical systems, Contemp. Math., 364, Amer. Math. Soc., Providence, RI, 2004, 193–203 | DOI | MR | Zbl
[19] Martio O., Ryazanov V., Srebro U., Yakubov E., “On $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 30 (2005), 49–69 | MR | Zbl
[20] Väisälä J., Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin etc, 1971 | MR
[21] Näkki R., “Boundary behavior of quasiconformal mappings in $n$-space”, Ann. Acad. Sci. Fenn. Ser. A1 Math., 484 (1970), 1–50 | MR
[22] Gehring F. W., Martio O., “Quasiextremal distance domains and extension of quasiconformal mappings”, J. Anal. Math., 45 (1985), 181–206 | DOI | MR | Zbl
[23] Martio O., Sarvas J., “Injectivity theorems in plane and space”, Ann. Acad. Sci. Fenn. Ser. A1 Math., 4:2 (1979), 383–401 | MR | Zbl
[24] Hurewicz W., Wallman H., Dimension theory, Princeton Univ. Press, Princeton, NJ, 1948 | MR | Zbl
[25] Federer H., Geometric Measure Theory, Grundlehren der Math. Wiss., 153, Springer-Verlag, New York, 1969 | MR | Zbl
[26] Gehring F. W., Lehto O., “On the total differentiability of functions of a complex variable”, Ann. Acad. Sci. Fenn. A1. Math., 272 (1959), 1–9 | MR
[27] Menchoff D., “Sur les differentielles totales des fonctions univalentes”, Math. Ann., 105:1 (1931), 75–85 | DOI | MR | Zbl
[28] Kovtonyuk D., Ryazanov V., “On the theory of mappings with finite area distortion”, J. Anal. Math., 104 (2008), 291–306 | DOI | MR
[29] Maz'ya V., Sobolev Spaces, Springer-Verlag, Berlin, 1985 | MR
[30] Ryazanov V., Srebro U., Yakubov E., “On ring solutions of Beltrami equation”, J. Anal. Math., 96 (2005), 117–150 | DOI | MR | Zbl
[31] Ryazanov V., Srebro U., Yakubov E., “Integral conditions in the mapping theory”, Ukr. mat. vestnik, 7:4 (2010), 73–87 | MR
[32] Ryazanov V., Srebro U., Yakubov E., “To strong ring solutions of the Beltrami equations”, Uzbek. Math. Zh., 2009, no. 1, 127–137 | MR
[33] Ryazanov V., Srebro U., Yakubov E., “On strong solutions of the Beltrami equations”, Complex Var. Elliptic Equ., 55:1–3 (2010), 219–236 | MR | Zbl
[34] Ryazanov V., Srebro U., Yakubov E., “Integral conditions in the theory of the Beltrami equations”, Complex Var. Elliptic Equ., 57:12 (2012), 1247–1270 | DOI | MR | Zbl
[35] Saks S., Teoriya integrala, IL, M., 1949, 495 pp.
[36] Ransford Th., Potential theory in the complex plane, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[37] Stoilov S., Lektsii o topologicheskikh printsipakh teorii analiticheskikh funktsii, Nauka, M., 1964 | MR
[38] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl
[39] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968 | MR