Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_4_a3, author = {S. I. Dejak and D. Egli and P. M. Lushnikov and I. M. Sigal}, title = {On blowup dynamics in the {Keller--Segel} model of chemotaxis}, journal = {Algebra i analiz}, pages = {47--84}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2013_25_4_a3/} }
TY - JOUR AU - S. I. Dejak AU - D. Egli AU - P. M. Lushnikov AU - I. M. Sigal TI - On blowup dynamics in the Keller--Segel model of chemotaxis JO - Algebra i analiz PY - 2013 SP - 47 EP - 84 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2013_25_4_a3/ LA - en ID - AA_2013_25_4_a3 ER -
S. I. Dejak; D. Egli; P. M. Lushnikov; I. M. Sigal. On blowup dynamics in the Keller--Segel model of chemotaxis. Algebra i analiz, Tome 25 (2013) no. 4, pp. 47-84. http://geodesic.mathdoc.fr/item/AA_2013_25_4_a3/
[1] Alber M., Chen N., Glimm T., Lushnikov P. M., “Multiscale dynamics of biological cells with chemotaktic interactions: from a discrete stochastic model to a continuous description”, Phys. Rev. E (3), 73:5 (2006), 051901, 11 pp. | DOI | MR
[2] Alber M., Chen N., Lushnikov P. M., Newman S. A., “Continuous macroscopic limit of a discrete stochastic model for interaction of living cells”, Phys. Rev. Lett., 99 (2007), 168102 | DOI
[3] Beckner W., “Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality”, Ann. of Math. (2), 138:1 (1993), 213–242 | DOI | MR | Zbl
[4] Bertozzi A. L., Carillo J. A., Laurent Th., “Blow-up in multidimensional aggregation equations with mildly singular interaction kernels”, Nonlinearity, 22:3 (2009), 683–710 | DOI | MR | Zbl
[5] Biler P., “Growth and accretion of mass in an astrophysical model”, Appl. Math. (Warsaw), 23:2 (1995), 179–189 | MR | Zbl
[6] Biler P., “Local and global solvability of some parabolic systems modeling chemotaxis”, Adv. Math. Sci. Appl., 8:2 (1998), 715–743 | MR | Zbl
[7] Biler P., Karch G., Laurencot P., The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in the plane, Preprint, 2006 | MR
[8] Bizoń P., Ovchinnikov Yu. N., Sigal I. M., “Collapse of an instanton”, Nonlinearity, 17:4 (2004), 1179–1191 | DOI | MR | Zbl
[9] Blanchet A., Carlen E., Carrillo J. A., “Functional inequalities, thick tails and asymptotics for the critical mass Patlak–Keller–Segel model”, J. Funct. Anal., 262:5 (2012), 2142–2230 ; arXiv: 1009.0134 | DOI | MR | Zbl
[10] Blanchet A., Carrillo J. A., Laurençot P., “Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions”, Calc. Var. Partial Diff. Equations, 35:2 (2009), 133–168 | DOI | MR | Zbl
[11] Blanchet A., Carrillo J. A., Masmoudi N., “Infinite time aggregation for the critical Patlak–Keller–Segel model in $\mathbb R^2$”, Comm. Pure Appl. Math., 61:10 (2008), 1449–1481 | DOI | MR | Zbl
[12] Blanchet A., Dolbeault J., Escobedo M., Fernandez J., “Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller–Segel model”, J. Math. Anal. Appl., 361:2 (2010), 533–542 | DOI | MR | Zbl
[13] Blanchet A., Dolbeault J., Perthame B., “Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions”, Electron. J. Diff. Equations, 2006 (2006), No 44, 32 pp., (electronic) | MR
[14] Bonner J. T., The cellular slime molds, Princeton Univ. Press, Princeton, NJ, 1967
[15] Brenner M. P., Constantin P., Kadanoff L. P., Schenkel A., Venkataramani S. C., “Diffusion, attraction and collapse”, Nonlinearity, 12:4 (1999), 1071–1098 | DOI | MR | Zbl
[16] Brenner M. P., Levitov L. S., Budrene E. O., “Physical mechanisms for chemotactic pattern formation by bacteria”, Biophys. J., 74 (1998), 1677–1693 | DOI
[17] Buslaev V. S., Perel'man G. S., “On the stability of solitary waves for nonlinear Schrödinger equations”, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995, 75–98 | MR | Zbl
[18] Buslaev V. S., Sulem C., “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:3 (2003), 419–475 | DOI | MR | Zbl
[19] Carlen E., Loss M., “Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on Sn”, Geom. Funct. Anal., 2:2 (1992), 90–104 | DOI | MR | Zbl
[20] Carlen E., Figalli A., Stability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller–Segel equation, arXiv: 1107.5976 | MR
[21] Carmeliet P., “Mechanisms of angiogenesis and arteriogenesis”, Nat. Med., 6 (2000), 389–395 | DOI
[22] Carrillo J. A., Fornasier M., Toscani G., Vecil F., “Particle, kinetic, and hydrodynamic models of swarming”, Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Inc., Boston, MA, 2010, 297–336 | MR | Zbl
[23] Chavanis P.-H., Sire C., “Exact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature”, Phys. Rev. E (3), 83:3 (2011), 031131, 20 pp. | DOI | MR
[24] Childress S., Percuss J. K., “Nonlinear aspects of chemotaxis”, Math. Bisosc., 56:3–4 (1981), 217–237 | DOI | MR | Zbl
[25] Constantin P., Kevrekidis I. G., Titi E. S., “Asymptotic states of a Smoluchowski equation”, Arch. Ration. Mech. Anal., 174:3 (2004), 365–384 | DOI | MR | Zbl
[26] Constantin P., Kevrekidis I., Titi E. S., “Remarks on a Smoluchowski equation”, Discrete Contin. Dyn. Syst., 11:1 (2004), 101–112 | DOI | MR | Zbl
[27] Cycon H. L., Froese R. G., Kirsch W., Simon B., Schrödinger Operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics. Springer study edition, Springer-Verlag, Berlin, 1987 | MR | Zbl
[28] Dejak S., Gang Z., Sigal I. M., Wang S., “Blow-up dynamics in nonlinear heat equations”, Adv. in Appl. Math., 40:4 (2008), 433–481 | DOI | MR | Zbl
[29] Dejak S. I., Lushnikov P. M., Ovchinnikov Yu. N., Sigal I. M., “On spectra of linearized operators for Keller–Segel models of chemotaxis”, Phys. D, 241:15 (2012), 1245–1254 | DOI | MR | Zbl
[30] Doi M., “Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases”, J. Polym. Sci., Polym. Phys. Ed., 19 (1981), 229–243 | DOI
[31] Dyachenko S. A., Lushnikov P. M., Vladimirova N., “Logarithmic-type Scaling of the Collapse of Keller–Segel Equation”, Numerical Analysis and Applied Mathematics, ICNAAM 2011, AIP Conf. Proc., 1389, 2011, 709–712 | DOI
[32] Gajewski H., Zacharias K., “Global behavior of a reaction-diffusion system modelling chemotaxis”, Math. Nachr., 195 (1998), 77–114 | DOI | MR | Zbl
[33] Gang Zhou, Sigal I. M., “On soliton dynamics in nonlinear Schrödinger equations”, Geom. Funct. Anal., 16:6 (2006), 1377–1390 | DOI | MR | Zbl
[34] Gang Zhou, Sigal I. M., “Relaxation of solitons in nonlinear Schrödinger equations with potentials”, Adv. Math., 216:2 (2007), 443–490 | DOI | MR | Zbl
[35] Gustafson S., Sigal I. M., Mathematical concepts of quantum mechanics, Springer-Verlag, Heidelberg, 2011 | MR | Zbl
[36] Herrero M. A., Velázquez J. J. L., “Chemptactic collapse for the Keller–Segel model”, J. Math. Biol., 35:2 (1996), 177–194 | DOI | MR | Zbl
[37] Herrero M. A., Velázquez J. J. L., “Singularity patterns in a chemotaxis model”, Math. Ann., 306:3 (1996), 583–623 | DOI | MR | Zbl
[38] Herrero M. A., Velázquez J. J. L., “A blow-up mechanism for a chemotaxis model”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), 633–683 | MR | Zbl
[39] Herrero M. A., Medina E., Velázquez J. J. L., “Finite-time aggregation into a single point in a reaction-diffusion system”, Nonlinearity, 10 (1997), 1739–1754 | DOI | MR | Zbl
[40] Herrero M. A., Medina E., Velázquez J. J. L., “Self-similar blow-up for a reaction-diffusion system”, J. Comput. Appl. Math., 97:1–2 (1998), 99–119 | DOI | MR | Zbl
[41] Hillen T., Painter K. J., “A user's guide to PDE models for chemotaxis”, J. Math. Biol., 58:1–2 (2009), 183–217 | DOI | MR | Zbl
[42] Horstmann D., “The nonsymmetric case of the Keller–Segel model in chemotaxis: some recent results”, NoDEA Nonlinear Differential Equations Appl., 8:4 (2001), 399–423 | DOI | MR | Zbl
[43] Horstmann D., “On the existence of radially symmetric blow-up solutions for the Keller–Segel model”, J. Math. Biol., 44:5 (2002), 463–478 | DOI | MR | Zbl
[44] Horstmann D., “From 1970 until present: The Keller–Segel model in chemotaxis and its consequences. I”, Jahresber. Deutsch. Math.-Verein, 105:3 (2003), 103–165 | MR | Zbl
[45] Horstmann D., “From 1970 until present: The Keller–Segel model in chemotaxis and its consequences. II”, Jahresber. Deutsch. Math.-Verein, 106:2 (2004), 51–69 | MR | Zbl
[46] Horstmann D., Wang G., “Blowup in a chemotaxis model without symmetry assumptions”, European J. Appl. Math., 12:2 (2001), 159–177 | DOI | MR | Zbl
[47] Horstmann D., Winkler M., “Boundedness vs. blowup in a chemotaxis system”, J. Differential Equations, 215:1 (2005), 52–107 | DOI | MR | Zbl
[48] Jäger W., Luckhaus S., “On explosions of solutions to a system of partial differential equations modelling chemotaxis”, Trans. Amer. Soc., 329:2 (1992), 819–824 | MR | Zbl
[49] Keller E. F., Segel L. A., “Initiation of slime mold aggregation viewed as an instability”, J. Theor. Biol., 26 (1970), 300–415 | DOI
[50] Krieger J., Schlag W., Tataru D., “Renormalization and blow up for charge one equivariant critical wave maps”, Invent. Math., 171:3 (2008), 543–615 | DOI | MR | Zbl
[51] Krieger J., Schlag W., Tataru D., Renormalization and blow up for critical Yang–Mills problem, 2008, arXiv: 0809.2114 | MR
[52] Larson R. G., The structure and rheology of complex fluids, Oxford Univ. Press, London, 1999
[53] Lushnikov P. M., “Critical chemotactic collapse”, Phys. Lett. A, 374 (2010), 1678–1685 | DOI | Zbl
[54] Lushnikov P. M., Chen N., Alber M., “Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact”, Phys. Rev. E, 78:6 (2008), 061904, 12 pp. | DOI
[55] Merle F., Rafael P., “Blow-up of the critical norm for some radial $L2$ super critical nonlinear Schrödinger equations”, Amer. J. Math., 130:4 (2008), 945–978 | DOI | MR | Zbl
[56] Merle F., Zaag H., “Blow-up behavior outside the origin for a semilinear wave equation in the radial case”, Bull. Sci. Math., 135:4 (2011), 353–373 | DOI | MR | Zbl
[57] Nanjundiah V., “Chemotaxis, signal relaying and aggregation morphology”, J. Theor. Biol., 42 (1973), 63–105 | DOI
[58] Nagai T., “Blow-up of radially symmetric solutions to a chemotaxis system”, Adv. Math. Sci. Appl., 5:2 (1995), 581–601 | MR | Zbl
[59] Nagai T., “Blow-up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains”, J. Inequal. Appl., 6:1 (2001), 37–55 | MR | Zbl
[60] Nagai T., “Global existence and blowup of solutions to a chemotaxis system”, Proc. of the Third World Congress of Nonlinear Analysis, Part 2 (Catania, 2000), Nonlinear Anal., 47, no. 2, 2001, 777–787 | DOI | MR | Zbl
[61] Nagai T., Senba T., “Behavior of radially symmetric solutions of a system related to chemotaxis”, Proc. of the Third World Congress of Nonlinear Analysis, Part 6 (Athens, 1996), Nonlinear Anal., 30, no. 6, 1997, 3837–3842 | DOI | MR | Zbl
[62] Nagai T., Senba T., “Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis”, Adv. Math. Sci. Appl., 8:1 (1998), 145–146 | MR
[63] Nagai T., Senba T., Suzuki T., “Chemotactic collapse in a parabolic system of mathematical biology”, Hiroshima Math. J., 30:3 (2000), 463–497 | MR | Zbl
[64] Nagai T., Senba T., Yoshida K., “Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis”, Funkcial. Ekvac., 40:3 (1997), 411–433 | MR | Zbl
[65] Newman T. J., Grima R., “Many-body theory of chemotactic cell-cell interactions”, Phys. Rev. E, 70:5 (2004), 051916, 15 pp. | DOI
[66] Oelschläger K., “On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes”, Probab. Theory Related Fields, 82:4 (1989), 565–586 | DOI | MR | Zbl
[67] Ostriker J., “The equilibrium of polytropic and isotermal cylinders”, Astrophys. J., 140 (1964), 1056–1066 | DOI | MR
[68] Othmer H. G., Stevens A., “Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks”, SIAM J. Appl. Math., 57:4 (1997), 1044–1081 | DOI | MR | Zbl
[69] Ovchinnikov Yu. N., Sigal I. M., “On collapse of wave maps”, Physica D, 240:17 (2011), 1311–1324 | DOI | MR | Zbl
[70] Patlak C. S., “Random walk with persistence and external bias”, Bull. Math. Biophys., 15 (1953), 311–338 | DOI | MR | Zbl
[71] Perthame B., Transport equations in biology, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2007 | MR | Zbl
[72] Rafael P., Rodnianski I., Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang–Mills problems, 2010, arXiv: 0911.0692
[73] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New–York–London, 1978 | MR | Zbl
[74] Rodnianski I., Sternbenz J., “On the formation of singularities in the critical $O(3)\sigma$-model”, Ann. of Math. (2), 172:1 (2010), 187–242 | DOI | MR | Zbl
[75] Sire C., Chavanis P.-H., “Critical dynamics of self-gravitating Langevin particles and bacterial populations”, Phys. Rev. E (3), 78:6 (2008), 061111, 22 pp. | DOI | MR
[76] Soffer A., Weinstein I. M., “Multichannel nonlinear scattering for nonintegrable equations”, Comm. Math. Phys., 133:1 (1990), 119–146 | DOI | MR | Zbl
[77] Soffer A., Weinstein I. M., “Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data”, J. Diff. Equations, 98:2 (1992), 376–390 | DOI | MR | Zbl
[78] Soffer A., Weinstein I. M., “Selection of the ground state for nonlinear Schrödinger equations”, Rev. Math. Phys., 16:8 (2004), 977–1071 ; (2003), arXiv: nlin.PS/0308020 | DOI | MR | Zbl
[79] Stevens A., “The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems”, SIAM J. Appl. Math., 61:1 (2000), 183–212, (electronic) | DOI | MR | Zbl
[80] Struwe M., “Equivariant wave maps in two space dimensions”, Dedicated to the memory of Sürgen K. Moser, Comm. Pure Appl. Math., 56:7 (2003), 815–823 | DOI | MR | Zbl
[81] Sulem C., Sulem P. L., Nonlinear Schrödinger Equation, Self-focusing and wave collapse, Applied Mathematical Sciences, 139, Springer-Verlag, New York, 1999 | MR | Zbl
[82] Tsai T.-P., Yau H.-T., “Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions”, Comm. Pure Appl. Math., 55:2 (2002), 153–216 | DOI | MR | Zbl
[83] Tsai T.-P., Yau H.-T., “Relaxation of excited states in nonlinear Schrödinger Equations”, Int. Math. Res. Not., 2002:31 (2002), 1629–1673 | DOI | MR | Zbl
[84] Tsai T.-P., Yau H.-T., “Stable directions for excited states of nonlinear Schrödinger equations”, Comm. Partial Differential Equations, 27:11–12 (2002), 2363–2402 | DOI | MR | Zbl
[85] Velázquez J. J. L., “Stability of some mechanisms of chemotactic aggregation”, SIAM J. Appl. Math., 62:5 (2002), 1581–1633 | DOI | MR | Zbl
[86] Velázquez J. J. L., “Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions”, SIAM J. Appl. Math., 64:4 (2004), 1198–1248 | DOI | MR
[87] Wolansky G., “On steady distributions of self-attracting clusters under friction and fluctuations”, Arch. Rational Mech. Anal., 119:4 (1992), 355–391 | DOI | MR | Zbl