Moments for the multidimensional Monkemeyer algorithm
Algebra i analiz, Tome 25 (2013) no. 4, pp. 28-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2013_25_4_a2,
     author = {M. Yu. Vodolagin},
     title = {Moments for the multidimensional {Monkemeyer} algorithm},
     journal = {Algebra i analiz},
     pages = {28--46},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_4_a2/}
}
TY  - JOUR
AU  - M. Yu. Vodolagin
TI  - Moments for the multidimensional Monkemeyer algorithm
JO  - Algebra i analiz
PY  - 2013
SP  - 28
EP  - 46
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_4_a2/
LA  - ru
ID  - AA_2013_25_4_a2
ER  - 
%0 Journal Article
%A M. Yu. Vodolagin
%T Moments for the multidimensional Monkemeyer algorithm
%J Algebra i analiz
%D 2013
%P 28-46
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_4_a2/
%G ru
%F AA_2013_25_4_a2
M. Yu. Vodolagin. Moments for the multidimensional Monkemeyer algorithm. Algebra i analiz, Tome 25 (2013) no. 4, pp. 28-46. http://geodesic.mathdoc.fr/item/AA_2013_25_4_a2/

[1] Brentjes A. J., Multidimensional continued fraction algorithms, Mathematical Centre Tracts, 145, Mathematish Centrum, Amsterdam, 1981 | MR | Zbl

[2] Brocot A., “Calcul des rouages par approximation, nouvelle methode”, Revue Chronométrique, 6 (1860), 186–194

[3] Grabiner D. J., “Farey nets and multidimentional continued fractions”, Monatsh. Math., 114:1 (1992), 35–61 | DOI | MR | Zbl

[4] Hurwitz A., “Über die angenäherte Darstellung der Zahlen durch rationale”, Brüche, Math. Ann., 44 (1894), 417–436 | DOI | MR

[5] Lagarias J. C., “Number theory and dynamical systems”, The unreasonabl effectivness of number theory (Orono, ME, 1991), Proc. Sympos. Appl. Math., 46, Amer. Math. Soc., Providence, RI, 1992, 35–72 | DOI | MR

[6] Mönkemeyer R., “Über fareynetze in $n$ dimensionen”, Math. Nachr., 11 (1963), 321–344 | DOI | MR

[7] Moshchevitin N., Zhigljavsky A., “Entropies of the partitions of the unit interval generated by the Farey tree”, Acta Arith., 115:1 (2004), 47–58 | DOI | MR | Zbl

[8] Moshchevitin N., Vielhaber M., “Moments for generalized Farey–Brocot partitions”, Funct. Approx. Comment. Math., 38, pt. 2 (2008), 131–157 | MR | Zbl

[9] Prellberg T., Slawny J., “Maps of intervals with indifferent fixed points: thermodynamic formalism and phase transitions”, J. Statist. Phys., 66:1–2 (1992), 503–514 | DOI | MR | Zbl

[10] Schweiger F., Multidimensional continuef fractions, Oxford Univ. Press, Oxford, 2000 | MR | Zbl

[11] Stern M., “Über eine zahlentheoretische funktion”, Crelles J. Reine Angew. Math., 55 (1858), 193–220 | DOI | Zbl

[12] Vielkhaber M., Moschevitin N. G., “Asimptotiki dlya dvumernykh setei Fareya–Broko”, Dokl. AN SSSR, 416:1 (2007), 11–14 | MR

[13] Dushistova A. A., “O razbienii otrezka $[0,1]$, porozhdennom posledovatelnostyami Broko”, Mat. sb., 198:5 (2007), 67–94 | DOI | MR | Zbl