Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_3_a6, author = {G. Rozenblum and M. Solomyak}, title = {On spectral estimates for the {Schr\"odinger} operators in global dimension~2}, journal = {Algebra i analiz}, pages = {185--199}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2013_25_3_a6/} }
G. Rozenblum; M. Solomyak. On spectral estimates for the Schr\"odinger operators in global dimension~2. Algebra i analiz, Tome 25 (2013) no. 3, pp. 185-199. http://geodesic.mathdoc.fr/item/AA_2013_25_3_a6/
[1] Grigoryan A., Nadirashvili N., Negative eigenvalues of two-dimensional Schrödinger operators, arXiv: 1112.4986
[2] Krasnosel'skii M. A., Rutickii Ya. B., Convex functions and Orlicz spaces, P. Noordhof Ltd., Groningen, 1961 | MR
[3] “Quantum graphs. I. Some basic structures. Special section on quantum graphs”, Kuchment P., 14:1 (2004), S107–S128 | MR | Zbl
[4] Kuchment P., “Quantum Graphs. II. Some spectral properties of quantum and combinatorial graphs”, J. Phys. A, 38:22 (2005), 4887–4900 | DOI | MR | Zbl
[5] Laptev A., Netrusov Yu., “On the negative eigenvalues of a class of Schrödinger operators”, Differential operators and spectral theory, Amer. Math. Soc. Transl., Ser. 2, 189, Amer. Math. Soc., Providence, RI, 1999, 173–186 | MR | Zbl
[6] Laptev A., Solomyak M., “On the negative spectrum of the two-dimensional Schrödinger operator with radial potential”, Comm. Math. Phys., 314:1 (2012), 229–241 http://www.ams.org.proxy.lib.chalmers.se/mathscinet/search/journaldoc.html?cn=Comm_Math_Phys | DOI | MR | Zbl
[7] Laptev A., Solomyak M., On the spectral estimates for the two-dimensional Schrödinger operator, arXiv: 1201.3074
[8] Levin D., Solomyak M., “Rozenblum–Lieb–Cwikel inequality for Markov generators”, J. Anal. Math., 71 (1997), 173–193 | DOI | MR | Zbl
[9] Molchanov S., Vainberg B., On general Cwikel–Lieb–Rozenblum and Lieb–Thirring inequalities, arXiv: ; See also: Around the research of Vladimir Maz'ya, v. III, Intern. Math. Ser., 13, Springer, New York; Tamara Rozhkovskaya, Novosibirsk, 2010, 201–246 0812.2968 | DOI | MR | Zbl
[10] Molchanov S., Vainberg B., Bargmann type estimates of the counting function for general Schrödinger operators, arXiv: 1201.3135 | MR
[11] Rao M. M., Ren Z. D., Theory of Orlicz spaces, Marcel Dekker, NY, 1991 | MR | Zbl
[12] Rozenblum G., Solomyak M., “Counting Schrödinger boundstates: semiclassics and beyond Sobolev Spaces in Mathematics. II”, Applications in Analysis and Partial Differential Equations, Intern. Math. ser., 8, Springer, NY; Tamara Rozhkovskaya Publ., Novosibirsk, 2008, 329–354 | MR
[13] Rozenblyum G., Solomyak M., “O spektralnykh otsenkakh dlya operatorov tipa Shrëdingera na $\mathbb Z^d$, $d\ge3$”, Probl. mat. anal., 41, Tamara Rozhkovskaya, Novosibirsk, 2009, 107–120 | MR
[14] Rozenblyum G., Solomyak M., “O spektralnykh otsenkakh dlya operatorov tipa Shrëdingera: sluchai maloi lokalnoi razmernosti”, Funkts. anal. i ego pril., 44:4 (2010), 21–33 | DOI | MR
[15] Rozenblyum G., Solomyak M., “Spektralnye otsenki dlya operatorov Shrëdingera s razrezhennymi potentsialami na grafakh”, Probl. mat. anal., 57, Tamara Rozhkovskaya, Novosibirsk, 2011, 151–164 | MR
[16] Shargorodsky E., On negative eigenvalues of two-dimensional Schrödinger operators, arXiv: 1203.4833
[17] Solomyak M., “Piecewise-polynomial approximation of functions from $H^l((0,1)^d)$, $2l=d$, and applications to the spectral theory of the Schrödinger operator”, Israel J. Math., 86:1–3 (1994), 253–275 | DOI | MR | Zbl
[18] Solomyak M., “On a class of spectral problems on the half-line and their applications to multi-dimensional problems”, J. Spectral Theory, 3 (2013), 215–235 ; arXiv: 1203.1156 | DOI | MR | Zbl