Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2013_25_3_a2, author = {O. L. Vinogradov and V. V. Zhuk}, title = {Estimates for functionals with a~known finite set of moments in terms of high order moduli of continuity in the spaces of functions defined on the segment}, journal = {Algebra i analiz}, pages = {86--120}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2013_25_3_a2/} }
TY - JOUR AU - O. L. Vinogradov AU - V. V. Zhuk TI - Estimates for functionals with a~known finite set of moments in terms of high order moduli of continuity in the spaces of functions defined on the segment JO - Algebra i analiz PY - 2013 SP - 86 EP - 120 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2013_25_3_a2/ LA - ru ID - AA_2013_25_3_a2 ER -
%0 Journal Article %A O. L. Vinogradov %A V. V. Zhuk %T Estimates for functionals with a~known finite set of moments in terms of high order moduli of continuity in the spaces of functions defined on the segment %J Algebra i analiz %D 2013 %P 86-120 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2013_25_3_a2/ %G ru %F AA_2013_25_3_a2
O. L. Vinogradov; V. V. Zhuk. Estimates for functionals with a~known finite set of moments in terms of high order moduli of continuity in the spaces of functions defined on the segment. Algebra i analiz, Tome 25 (2013) no. 3, pp. 86-120. http://geodesic.mathdoc.fr/item/AA_2013_25_3_a2/
[1] Vinogradov O. L., Zhuk V. V., “Otsenki funktsionalov s izvestnoi posledovatelnostyu momentov cherez otkloneniya srednikh tipa Steklova”, Zap. nauch. semin. POMI, 383, 2010, 5–32 | MR
[2] Vinogradov O. L., Zhuk V. V., “Skorost ubyvaniya konstant v neravenstvakh tipa Dzheksona v zavisimosti ot poryadka modulya nepreryvnosti”, Zap. nauch. semin. POMI, 383, 2010, 33–52 | MR
[3] Vinogradov O. L., Zhuk V. V., “Otsenki funktsionalov s izvestnym konechnym naborom momentov cherez otkloneniya operatorov, postroennykh na osnove srednikh Steklova i konechnykh raznostei”, Zap. nauch. semin. POMI, 392, 2011, 32–66 | MR
[4] Zhuk V. V., Natanson G. I., “K voprosu priblizheniya v integralnoi metrike funktsii, zadannykh na otrezke”, Vestn. Leningr. un-ta. Ser. mat., mekh., astr., 1979, no. 13, 16–26 | MR | Zbl
[5] Sendov B., “Modifitsirovannaya funktsiya Steklova”, Dokl. Bolg. AN, 36 (1983), 315–317 | MR | Zbl
[6] Zhuk V. V., Natanson G. I., Metodicheskie ukazaniya k kursu “Approksimatsiya funktsii”, Ch. 4, SPbGU, SPb., 1991
[7] Zhuk V. V., Kuzyutin V. F., Approksimatsiya funktsii i chislennoe integrirovanie, SPbGU, SPb., 1995
[8] Sendov B., Popov V., Usrednennye moduli gladkosti, Mir, M., 1988 | MR
[9] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR
[10] Foucart S., Kryakin Y., Shadrin A., “On the exact constant in the Jackson–Stechkin inequality for the uniform metric”, Constr. Approx., 29 (2009), 157–179 | DOI | MR | Zbl
[11] Kryakin Yu., Whitney's theorem for oscillating on $\mathbb R$ functions, 2006, arXiv: math/0612442v1
[12] Whitney H., “On functions with bounded $n$-th differences”, J. Math. Pures Appl. (9), 36:5 (1957), 67–95 | MR | Zbl
[13] Zhelnov O., “Whitney constants are bounded by $1$ for $k=5,6,7$”, East J. Approx., 8 (2002), 1–14 | MR | Zbl
[14] Zhelnov O. D., Neravenstvo Uitni i ego obobscheniya, Kand. dis., Kiev, 2004
[15] Gilewicz J., Kryakin Yu. V., Shevchuk I. A., “Boundedness by 3 of the Whitney interpolation constant”, J. Approx Theory, 119 (2002), 271–290 | DOI | MR | Zbl
[16] Kryakin Yu. V., Kovalenko L. G., “O konstantakh Uitni v klassakh $L_p$, $1\le p\infty$”, Izv. vuzov. Mat., 1992, no. 1, 69–77 | MR | Zbl
[17] Zhuk V. V., Metodicheskie ukazaniya k kursu “Approksimatsiya funktsii”, Ch. 1, LGU, L., 1988
[18] Zhuk V. V., “Funktsii klassa $\mathrm{Lip}1$ i polinomy S. N. Bernshteina”, Vestn. Leningr. un-ta. Ser. mat., mekh., astr., 1989, no. 1, 25–30 | MR | Zbl
[19] Vinogradov O. L., “Nekotorye tochnye neravenstva dlya vtorogo modulya nepreryvnosti periodicheskikh funktsii i funktsii, prodolzhennykh s otrezka”, Zap. nauch. semin. POMI, 232, 1996, 33–49 | MR | Zbl
[20] Zhuk V. V., Natanson G. I., “O priblizhenii funktsii, zadannykh na otrezke”, Metody vychisl., 17, SPbGU, SPb., 1995, 105–121 | MR
[21] Zhuk V. V., Metodicheskie ukazaniya k kursu “Teoriya approksimatsii funktsii i ee prilozheniya”, Ch. 1, SPbGU, SPb., 1992
[22] Vinogradov O. L., Zhuk V. V., “Otsenki funktsionalov s izvestnym konechnym naborom momentov cherez moduli nepreryvnosti i povedenie konstant v neravenstvakh tipa Dzheksona”, Algebra i analiz, 24:5 (2012), 1–43 | MR
[23] Sinwel H. F., “Uniform approximation of differentiable functions by algebraic polynomials”, J. Approx. Theory, 32:1 (1981), 1–8 | DOI | MR | Zbl
[24] Daugavet I. K., Vvedenie v klassicheskuyu teoriyu priblizheniya funktsii, SPbGU, SPb., 2011
[25] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, LGU, L., 1977 | MR
[26] Turetskii A. Kh., Teoriya interpolirovaniya v zadachakh, Vysh. shkola, Minsk, 1968 | Zbl
[27] Chakrabarti A., Hamsapriye, “Derivation of the errors involved in interpolation and their application to numerical quadrature formulae”, J. Comput. Appl. Math., 92 (1998), 59–68 | DOI | MR | Zbl
[28] Turetskii A. Kh., Teoriya interpolirovaniya v zadachakh, Ch. 2, Vysh. shkola, Minsk, 1977 | Zbl
[29] Shadrin A., “Error bounds for Lagrange interpolation”, J. Approx. Theory, 80 (1995), 25–49 | DOI | MR | Zbl
[30] Howell G. W., “Derivative error bounds for Lagrange interpolation”, J. Approx. Theory, 67 (1991), 164–173 | DOI | MR | Zbl
[31] Floater M. S., “Error formulas for divided difference expansions and numerical differentiation”, J. Approx. Theory, 122 (2003), 1–9 | DOI | MR | Zbl
[32] Zhuk V. V., Natanson G. I., “Nekotorye zamechaniya o periodicheskikh ekvidistantnykh splainakh”, Vestn. Leningr. un-ta. Ser. mat., mekh., astr., 1985, no. 8, 12–17 | MR | Zbl
[33] Stefensen I. F., Teoriya interpolyatsii, ONTI, M.–L., 1936
[34] Brodskii M. L., “Ob otsenke ostatochnogo chlena formul chislennogo differentsirovaniya”, Uspekhi mat. nauk, 13:6 (1958), 73–77 | MR | Zbl
[35] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, 5-e izd., GIFML, M.–L., 1962
[36] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1988 | MR
[37] Natanson G. I., “Zamechanie o formule Nyutona–Kotesa”, Metody vychisl., 14, LGU, L., 1985, 58–59 | MR