Estimates for functionals with a~known finite set of moments in terms of high order moduli of continuity in the spaces of functions defined on the segment
Algebra i analiz, Tome 25 (2013) no. 3, pp. 86-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2013_25_3_a2,
     author = {O. L. Vinogradov and V. V. Zhuk},
     title = {Estimates for functionals with a~known finite set of moments in terms of high order moduli of continuity in the spaces of functions defined on the segment},
     journal = {Algebra i analiz},
     pages = {86--120},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_3_a2/}
}
TY  - JOUR
AU  - O. L. Vinogradov
AU  - V. V. Zhuk
TI  - Estimates for functionals with a~known finite set of moments in terms of high order moduli of continuity in the spaces of functions defined on the segment
JO  - Algebra i analiz
PY  - 2013
SP  - 86
EP  - 120
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_3_a2/
LA  - ru
ID  - AA_2013_25_3_a2
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%A V. V. Zhuk
%T Estimates for functionals with a~known finite set of moments in terms of high order moduli of continuity in the spaces of functions defined on the segment
%J Algebra i analiz
%D 2013
%P 86-120
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_3_a2/
%G ru
%F AA_2013_25_3_a2
O. L. Vinogradov; V. V. Zhuk. Estimates for functionals with a~known finite set of moments in terms of high order moduli of continuity in the spaces of functions defined on the segment. Algebra i analiz, Tome 25 (2013) no. 3, pp. 86-120. http://geodesic.mathdoc.fr/item/AA_2013_25_3_a2/

[1] Vinogradov O. L., Zhuk V. V., “Otsenki funktsionalov s izvestnoi posledovatelnostyu momentov cherez otkloneniya srednikh tipa Steklova”, Zap. nauch. semin. POMI, 383, 2010, 5–32 | MR

[2] Vinogradov O. L., Zhuk V. V., “Skorost ubyvaniya konstant v neravenstvakh tipa Dzheksona v zavisimosti ot poryadka modulya nepreryvnosti”, Zap. nauch. semin. POMI, 383, 2010, 33–52 | MR

[3] Vinogradov O. L., Zhuk V. V., “Otsenki funktsionalov s izvestnym konechnym naborom momentov cherez otkloneniya operatorov, postroennykh na osnove srednikh Steklova i konechnykh raznostei”, Zap. nauch. semin. POMI, 392, 2011, 32–66 | MR

[4] Zhuk V. V., Natanson G. I., “K voprosu priblizheniya v integralnoi metrike funktsii, zadannykh na otrezke”, Vestn. Leningr. un-ta. Ser. mat., mekh., astr., 1979, no. 13, 16–26 | MR | Zbl

[5] Sendov B., “Modifitsirovannaya funktsiya Steklova”, Dokl. Bolg. AN, 36 (1983), 315–317 | MR | Zbl

[6] Zhuk V. V., Natanson G. I., Metodicheskie ukazaniya k kursu “Approksimatsiya funktsii”, Ch. 4, SPbGU, SPb., 1991

[7] Zhuk V. V., Kuzyutin V. F., Approksimatsiya funktsii i chislennoe integrirovanie, SPbGU, SPb., 1995

[8] Sendov B., Popov V., Usrednennye moduli gladkosti, Mir, M., 1988 | MR

[9] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR

[10] Foucart S., Kryakin Y., Shadrin A., “On the exact constant in the Jackson–Stechkin inequality for the uniform metric”, Constr. Approx., 29 (2009), 157–179 | DOI | MR | Zbl

[11] Kryakin Yu., Whitney's theorem for oscillating on $\mathbb R$ functions, 2006, arXiv: math/0612442v1

[12] Whitney H., “On functions with bounded $n$-th differences”, J. Math. Pures Appl. (9), 36:5 (1957), 67–95 | MR | Zbl

[13] Zhelnov O., “Whitney constants are bounded by $1$ for $k=5,6,7$”, East J. Approx., 8 (2002), 1–14 | MR | Zbl

[14] Zhelnov O. D., Neravenstvo Uitni i ego obobscheniya, Kand. dis., Kiev, 2004

[15] Gilewicz J., Kryakin Yu. V., Shevchuk I. A., “Boundedness by 3 of the Whitney interpolation constant”, J. Approx Theory, 119 (2002), 271–290 | DOI | MR | Zbl

[16] Kryakin Yu. V., Kovalenko L. G., “O konstantakh Uitni v klassakh $L_p$, $1\le p\infty$”, Izv. vuzov. Mat., 1992, no. 1, 69–77 | MR | Zbl

[17] Zhuk V. V., Metodicheskie ukazaniya k kursu “Approksimatsiya funktsii”, Ch. 1, LGU, L., 1988

[18] Zhuk V. V., “Funktsii klassa $\mathrm{Lip}1$ i polinomy S. N. Bernshteina”, Vestn. Leningr. un-ta. Ser. mat., mekh., astr., 1989, no. 1, 25–30 | MR | Zbl

[19] Vinogradov O. L., “Nekotorye tochnye neravenstva dlya vtorogo modulya nepreryvnosti periodicheskikh funktsii i funktsii, prodolzhennykh s otrezka”, Zap. nauch. semin. POMI, 232, 1996, 33–49 | MR | Zbl

[20] Zhuk V. V., Natanson G. I., “O priblizhenii funktsii, zadannykh na otrezke”, Metody vychisl., 17, SPbGU, SPb., 1995, 105–121 | MR

[21] Zhuk V. V., Metodicheskie ukazaniya k kursu “Teoriya approksimatsii funktsii i ee prilozheniya”, Ch. 1, SPbGU, SPb., 1992

[22] Vinogradov O. L., Zhuk V. V., “Otsenki funktsionalov s izvestnym konechnym naborom momentov cherez moduli nepreryvnosti i povedenie konstant v neravenstvakh tipa Dzheksona”, Algebra i analiz, 24:5 (2012), 1–43 | MR

[23] Sinwel H. F., “Uniform approximation of differentiable functions by algebraic polynomials”, J. Approx. Theory, 32:1 (1981), 1–8 | DOI | MR | Zbl

[24] Daugavet I. K., Vvedenie v klassicheskuyu teoriyu priblizheniya funktsii, SPbGU, SPb., 2011

[25] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, LGU, L., 1977 | MR

[26] Turetskii A. Kh., Teoriya interpolirovaniya v zadachakh, Vysh. shkola, Minsk, 1968 | Zbl

[27] Chakrabarti A., Hamsapriye, “Derivation of the errors involved in interpolation and their application to numerical quadrature formulae”, J. Comput. Appl. Math., 92 (1998), 59–68 | DOI | MR | Zbl

[28] Turetskii A. Kh., Teoriya interpolirovaniya v zadachakh, Ch. 2, Vysh. shkola, Minsk, 1977 | Zbl

[29] Shadrin A., “Error bounds for Lagrange interpolation”, J. Approx. Theory, 80 (1995), 25–49 | DOI | MR | Zbl

[30] Howell G. W., “Derivative error bounds for Lagrange interpolation”, J. Approx. Theory, 67 (1991), 164–173 | DOI | MR | Zbl

[31] Floater M. S., “Error formulas for divided difference expansions and numerical differentiation”, J. Approx. Theory, 122 (2003), 1–9 | DOI | MR | Zbl

[32] Zhuk V. V., Natanson G. I., “Nekotorye zamechaniya o periodicheskikh ekvidistantnykh splainakh”, Vestn. Leningr. un-ta. Ser. mat., mekh., astr., 1985, no. 8, 12–17 | MR | Zbl

[33] Stefensen I. F., Teoriya interpolyatsii, ONTI, M.–L., 1936

[34] Brodskii M. L., “Ob otsenke ostatochnogo chlena formul chislennogo differentsirovaniya”, Uspekhi mat. nauk, 13:6 (1958), 73–77 | MR | Zbl

[35] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, 5-e izd., GIFML, M.–L., 1962

[36] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1988 | MR

[37] Natanson G. I., “Zamechanie o formule Nyutona–Kotesa”, Metody vychisl., 14, LGU, L., 1985, 58–59 | MR