Sublinear dimension growth in the Kreiss Matrix Theorem
Algebra i analiz, Tome 25 (2013) no. 3, pp. 3-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a possible sublinear dimension growth in the Kreiss Matrix Theorem bounding the stability constant in terms of the Kreiss resolvent characteristic. Such a growth is proved for matrices having unimodular spectrum and acting on a uniformly convex Banach space. The principal ingredients to results obtained come from geometric properties of eigenvectors, where we use and compare the approaches by C. A. McCarthy–J. Schwartz (1965) and V. I. Gurarii–N. I. Gurarii (1971). The sharpness issue is verified via finite Muckenhoupt bases (by using mostly the approach by M. Spijker, S. Tracogna, and B. Welfert (2003)).
Keywords: power bounded, Kreiss Matrix Theorem, unconditional basis, Muckenhoupt condition.
@article{AA_2013_25_3_a0,
     author = {N. Nikolski},
     title = {Sublinear dimension growth in the {Kreiss} {Matrix} {Theorem}},
     journal = {Algebra i analiz},
     pages = {3--51},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_3_a0/}
}
TY  - JOUR
AU  - N. Nikolski
TI  - Sublinear dimension growth in the Kreiss Matrix Theorem
JO  - Algebra i analiz
PY  - 2013
SP  - 3
EP  - 51
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_3_a0/
LA  - en
ID  - AA_2013_25_3_a0
ER  - 
%0 Journal Article
%A N. Nikolski
%T Sublinear dimension growth in the Kreiss Matrix Theorem
%J Algebra i analiz
%D 2013
%P 3-51
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_3_a0/
%G en
%F AA_2013_25_3_a0
N. Nikolski. Sublinear dimension growth in the Kreiss Matrix Theorem. Algebra i analiz, Tome 25 (2013) no. 3, pp. 3-51. http://geodesic.mathdoc.fr/item/AA_2013_25_3_a0/

[1] Arendt W., Batty C., Hieber M., Neubrander F., Vector-valued Laplace Transforms and Cauchy Problems, Monogr. Math., 96, 2nd ed., Birkhäuser, Basel, 2011 | MR | Zbl

[2] Bakaev N. Yu., “Constant size control in stability estimates under some resolvent conditions”, Vychis. metody i program., 4:2 (2003), 348–357

[3] Baranov A., Zarouf R., A model space approach to some classical inequalities for rational functions (to appear)

[4] Benamara N., Nikolski N., “Resolvent tests for similarity to a normal operator”, Proc. London Math. Soc. (3), 78 (1999), 585–626 | DOI | MR | Zbl

[5] Bernstein S. N., Lecons sur les Propriétés Extrémales et la Meilleure Approximation des Fonctions Analytiques d'une Variable Réelle, Gauthier–Villars, Paris, 1926 | Zbl

[6] Bonsall F. F., Duncan J., Numerical ranges of operators on normed spaces and of elements of normed algebras, Cambridge Univ. Press, Cambridge, 1971 | MR | Zbl

[7] Borovykh N., Drissi D., Spijker M. N., “A note about Ritt's condition, related resolvent conditions and power bounded operators”, Numer. Funct. Anal. Optim., 21:3–4 (2000), 425–438 | DOI | MR | Zbl

[8] Borwein P., Erdélyi T., Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995 | MR | Zbl

[9] Borwein P., Erdélyi T., “Sharp extensions of Bernstein's inequality to rational spaces”, Mathematika, 43:2 (1996), 413–423 | DOI | MR

[10] Crabb M. J., “The power inequality on normed spaces”, Proc. Edinburgh Math. Soc., 17 (1970), 237–240 | DOI | MR

[11] Dolzhenko E. P., “Nekotorye tochnye integralnye otsenki proizvodnykh ratsionalnykh i algebraicheskikh funktsii. Prilozheniya”, Anal. Math., 4 (1978), 247–26 | DOI | MR

[12] Dolzhenko E. P., Danchenko V. I., “Otobrazhenie mnozhestv konechnoi $\alpha$-mery posredstvom ratsionalnykh funktsii”, Izv. AN SSSR. Ser. mat., 51:6 (1987), 1309–1321 | MR | Zbl

[13] van Dorsselaer J. L. M., Kraaijevanger J. F. B. M., Spijker M. N., “Linear stability analysis in the numerical solution of initial value problems”, Acta Numerica, Cambridge Univ. Press, Cambridge, 1993, 199–237 | MR | Zbl

[14] Domar Y., “On the existence of a largest subharmonic minorant of a given function”, Ark. Mat., 3:5 (1958), 429–440 | DOI | MR | Zbl

[15] El-Fallah O., Ransford T., “Extremal growth of powers of operators satisfying resolvent conditions of Kreiss–Ritt type”, J. Funct. Anal., 196 (2002), 135–154 | DOI | MR | Zbl

[16] Graham C. C., McGehee O. C., Essays in Commutative Harmonic Analysis, Springer, NY–Heidelberg, 1979 | MR | Zbl

[17] Gurarii N. I., “O posledovatelnostyakh koeffitsientov razlozhenii po bazisam v gilbertovom i banakhovom prostranstvakh”, Izv. AN SSSR. Ser. mat., 35:1 (1971), 216–223 | MR | Zbl

[18] Gurarii V. I., Gurarii N. I., “O bazisakh v ravnomerno vypuklykh i ravnomerno gladkikh banakhovykh prostranstvakh”, Izv. AN SSSR. Ser. mat., 35:1 (1971), 210–215 | MR | Zbl

[19] Hanner O., “On the uniform convexity of $L^p$ and $l^p$”, Ark. Mat., 3:19 (1955), 239–244 | MR

[20] James R. C., “Super-reflexive spaces with bases”, Pacific J. Math., 41:2 (1972), 409–419 | DOI | MR | Zbl

[21] Jones R., Li Xin., Mohapatra R. N., Rodriguez R. S., “On the Bernstein Inequality for Rational Functions with a Prescribed Zero”, J. Approx. Theory, 95 (1998), 476–496 | DOI | MR | Zbl

[22] Kraaijevanger J. F. B. M., “Two counterexamples related to the Kreiss matrix theorem”, BIT, 34 (1994), 113–119 | DOI | MR | Zbl

[23] Kreiss H.-O., “Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren”, BIT, 2 (1962), 153–181 | DOI | MR | Zbl

[24] Verbitskii I. E., Krupnik N. Ya., “Tochnye konstanty v teoremakh K. I. Babenko i B. V. Khvedelidze ob ogranichennosti singulyarnogo operatora”, Soobsch. AN GrSSR, 85:1 (1977), 21–24 | MR

[25] Laptev G. I., “Usloviya ravnomernoi korrektnosti zadachi Koshi dlya sistem uravnenii”, Dokl. AN SSSR, 220:2 (1975), 281–284 | MR | Zbl

[26] LeVeque R. J., Trefethen L. N., “On the resolvent condition in the Kreiss matrix theorem”, BIT, 24 (1984), 584–591 | DOI | MR | Zbl

[27] Levinson N., Gap and density theorems, AMS Colloquium Publ., Providence, 1940 | MR | Zbl

[28] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. I–II, Springer-Verlag, Berlin etc., 1977 | MR | Zbl

[29] Lyubich Yu., “Spectral localization, power boundedness and invariant subspaces under Ritt's type condition”, Studia Math., 134 (1999), 153–167 | MR | Zbl

[30] McCarthy C. A., Schwartz J. T., “On the norm of a finite Boolean algebra of projections, and applications to theorems of Kreiss and Morton”, Comm. Pure Appl. Math., 18 (1965), 191–201 | DOI | MR | Zbl

[31] Miller J., Strang G., “Matrix theorems for partial differential and difference equations”, Math. Scand., 18 (1966), 113–123 | MR

[32] Morton K. W., “On a matrix theorem due to H.-O. Kreiss”, Comm. Pure Appl. Math., 17 (1964), 375–379 | DOI | MR | Zbl

[33] Nagy B., Zemanek J., “A resolvent condition implying power boundedness”, Studia Math., 134 (1999), 143–151 | MR | Zbl

[34] Nikolski N., Operators, Functions, and Systems: An easy reading, v. 1–2, Amer. Math. Soc., Providence, RI, 2002 | Zbl

[35] Nikolski N., “Condition numbers of large matrices, and analytic capacities”, Algebra i analiz, 17:4 (2005), 125–180 | MR | Zbl

[36] Nikolskii N. K., Khruschev S. V., “Funktsionalnaya model i nekotorye zadachi spektralnoi teorii funktsii”, Tr. Mat. in-ta AN SSSR, 176, 1987, 97–210 | MR | Zbl

[37] Pekarskii A. A., “Ratsionalnye priblizheniya funktsii s proizvodnymi iz prostranstva V. I. Steklova”, Algebra i analiz, 13:2 (2001), 165–190 | MR | Zbl

[38] Pekarskii A. A., “Neravenstva tipa Bershteina dlya proizvodnykh ratsionalnykh funktsii v prostranstvakh $L^p$-spaces, $0

1$ na krivykh Lavrenteva”, Algebra i analiz, 16:3 (2004), 143–170 | MR | Zbl

[39] Petrushev P. P., Popov V. A., Rational Approximation of Real Functions, Encyclopedia of Mathematics and its Applications, 28, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[40] Pisier G., Martingales in Banach Spaces (in connection with Type and Cotype), Course IHP, Feb. 2–8, 2011 people.math.jussieu.fr/~pisier/ihp-pisier.pdf

[41] Reddy S. C., Trefethen L. N., “Stability of the method of lines”, Numer. Math., 62 (1992), 235–267 | DOI | MR

[42] Smith J. C., “An inequality for rational functions”, Amer. Math. Monthly, 92 (1985), 740–741

[43] Spijker M. N., “On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem”, BIT, 31 (1991), 551–555 | DOI | MR | Zbl

[44] Spijker M. N., Numerical Stability. Stability Estimates and Resolvent Conditions in the Numerical Solution of Initial Value Problems, Lecture Notes, Leiden, 1998 http://www.math.leidenuniv.nl/~spijker/

[45] Spijker M. N., Tracogna S., Welfert B., “About the Sharpness of the Stability Estimates in the Kreiss Matrix Theorem”, Math. Comp., 72 (2003), 697–713 | DOI | MR | Zbl

[46] Strikwerda J. C., Wade B. A., “A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions”, Banach Center Publ., 38 (1997), 339–360 | MR | Zbl

[47] Szökefalvi-Nagy B., “On uniformly bounded linear transformations in Hilbert space”, Acta Sci. Math. (Szeged), 11 (1947), 152–157 | MR

[48] Tadmor E., “The resolvent condition and uniform power boundedness”, Linear Algebra Appl., 80 (1986), 250–252 | MR

[49] Toh K.-Ch., Trefethen L. N., “The Kreiss matrix theorem on a general complex domain”, SIAM J. Matrix Anal. Appl., 21:1 (1999), 145–165 | DOI | MR | Zbl

[50] Trefethen L. N., Embree M., Spectra And Pseudospectra: The Behavior of Nonnormal Matrices And Operators, Princeton Univ. Press, Princeton, 2005 | MR | Zbl

[51] Vitse P., “The Riesz turndown collar theorem giving an asymptotic estimate of the powers of an operator under the Ritt condition”, Rendiconti Circ. Mat. Palermo (2), 53:2 (2004), 283–312 | DOI | MR | Zbl

[52] Vitse P., “Functional calculus estimates under Kreiss type conditions”, Math. Nachr., 278 (2005), 1811–1822 | DOI | MR | Zbl