Spectral and scattering theory for perturbations of the Carleman operator
Algebra i analiz, Tome 25 (2013) no. 2, pp. 251-278.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral properties of the Carleman operator (the Hankel operator with the kernel $h_0(t)=t^{-1}$) are studied; in particular, an explicit formula for its resolvent is found. Then, perturbations are considered of the Carleman operator $H_0$ by Hankel operators $V$ with kernels $v(t)$ decaying sufficiently rapidly as $t\to\infty$ and not too singular at $t=0$. The goal is to develop scattering theory for the pair $H_0$, $H=H_0+V$ and to construct an expansion in eigenfunctions of the continuous spectrum of the Hankel operator $H$. Also, it is proved that, under general assumptions, the singular continuous spectrum of the operator $H$ is empty and that its eigenvalues may accumulate only to the edge points $0$ and $\pi$ in the spectrum of $H_0$. Simple conditions are found for the finiteness of the total number of eigenvalues of the operator $H$ lying above the (continuous) spectrum of the Carleman operator $H_0$, and an explicit estimate of this number is obtained. The theory constructed is somewhat analogous to the theory of one-dimensional differential operators.
Keywords: Hankel operators, resolvent kernels, absolutely continuous spectrum, eigenfunctions, wave operators, scattering matrix, resonances, discrete spectrum, total number of eigenvalues.
@article{AA_2013_25_2_a11,
     author = {D. R. Yafaev},
     title = {Spectral and scattering theory for perturbations of the {Carleman} operator},
     journal = {Algebra i analiz},
     pages = {251--278},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2013_25_2_a11/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - Spectral and scattering theory for perturbations of the Carleman operator
JO  - Algebra i analiz
PY  - 2013
SP  - 251
EP  - 278
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2013_25_2_a11/
LA  - en
ID  - AA_2013_25_2_a11
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T Spectral and scattering theory for perturbations of the Carleman operator
%J Algebra i analiz
%D 2013
%P 251-278
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2013_25_2_a11/
%G en
%F AA_2013_25_2_a11
D. R. Yafaev. Spectral and scattering theory for perturbations of the Carleman operator. Algebra i analiz, Tome 25 (2013) no. 2, pp. 251-278. http://geodesic.mathdoc.fr/item/AA_2013_25_2_a11/

[1] Beals R., Deift P., Tomei C., Direct and inverse scattering on the line, Math. Surveys Monogr., 28, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[2] Buslaev V. S., Faddeev L. D., “Formulas for traces for a singular Sturm-Liouville differential operator”, Soviet Math. Dokl., 1 (1960), 451–454 | MR | Zbl

[3] Faddeev L. D., “Properties of the $S$-matrix of the one-dimensional Schrödinger equation”, Amer. Math. Soc. Transl. Ser. 2, 65, Amer. Math. Soc., Providence, RI, 1967, 139–166 | Zbl

[4] Howland J. S., “Spectral theory of self-adjoint Hankel matrices”, Michigan Math. J., 33 (1986), 145–153 | DOI | MR | Zbl

[5] Howland J. S., “Spectral theory of operators of Hankel type. I”, Indiana Univ. Math. J., 41:2 (1992), 409–426 | DOI | MR | Zbl

[6] Kuroda S. T., “Scattering theory for differential operators, I, operator theory”, J. Math. Soc. Japan, 25:1 (1973), 75–104 | DOI | MR | Zbl

[7] Östensson J., Yafaev D. R., “Trace formula for differential operators of an arbitrary order”, Oper. Theory Adv. Appl., 218, Birkhäuser Verlag, Basel, 2012, 541–570 | MR

[8] Peller V. V., Hankel operators and their applications, Springer-Verlag, Berlin, 2002 | MR | Zbl

[9] Power S. R., Hankel operators on Hilbert space, Pitnam, Boston, 1982 | MR | Zbl

[10] Yafaev D. R., Mathematical scattering theory. General theory, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl

[11] Yafaev D. R., “Spectral and scattering theory of fourth order differential operators”, Adv. Math. Sci., 225 (2008), 265–299 | MR | Zbl

[12] Yafaev D. R., Mathematical scattering theory. Analytic theory, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl