Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2012_24_6_a6, author = {O. Safronov}, title = {Absolutely continuous spectrum of a~one-parameter family of {Schr\"odinger} operators}, journal = {Algebra i analiz}, pages = {178--195}, publisher = {mathdoc}, volume = {24}, number = {6}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2012_24_6_a6/} }
O. Safronov. Absolutely continuous spectrum of a~one-parameter family of Schr\"odinger operators. Algebra i analiz, Tome 24 (2012) no. 6, pp. 178-195. http://geodesic.mathdoc.fr/item/AA_2012_24_6_a6/
[1] Bourgain J., “On random Schrödinger operators on $\mathbb Z^2$”, Discrete Contin. Dyn. Syst., 8:1 (2002), 1–15 | DOI | MR | Zbl
[2] Bourgain J., “Random lattice Schrödinger operators with decaying potential: some higher dimensional phenomena”, Geometric Aspects of Functional Analysis (Israel Seminar 2001–2002), Lecture Notes in Math., 1807, eds. V. D. Milman, G. Schechtman, Springer, Berlin, 2003, 70–98 | DOI | MR | Zbl
[3] Deift P., Killip R., “On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials”, Comm. Math. Phys., 203:2 (1999), 341–347 | DOI | MR | Zbl
[4] Denisov S., “On the absolutely continuous spectrum of Dirac operator”, Comm. Partial Differential Equations, 29:9–10 (2004), 1403–1428 | MR | Zbl
[5] Denisov S., “Absolutely continuous spectrum of multidimensional Schrödinger operator”, Int. Math. Res. Notices, 2004:74 (2004), 3963–3982 | DOI | MR | Zbl
[6] Denisov S., “On the preservation of absolutely continuous spectrum for Schrödinger operators”, J. Funct. Anal., 231:1 (2006), 143–156 | DOI | MR | Zbl
[7] Denisov S., “Schrödinger operators and associated hyperbolic pencils”, J. Funct. Anal., 254 (2008), 2186–2226 | DOI | MR | Zbl
[8] Frank R. L., Safronov O., “Absolutely continuous spectrum of a class of random nonergodic Schrödinger operators”, Int. Math. Res. Notices, 2005:42 (2005), 2559–2577 | DOI | MR | Zbl
[9] Denisov S., Kiselev A., “Spectral properties of the Schrödinger operators with decaying potentials”, Spectral Theory and Mathematical Physics, A Festschrift in Honor of Barry Simon's 60th Birthday, Proc. Sympos. Pure Math., 76, Part 2, Amer. Math. Soc., Providence, RI, 2007, 565–589 | DOI | MR | Zbl
[10] Laptev A., Naboko S., Safronov O., “Absolutely continuous spectrum of Schrödinger operators with slowly decaying and oscillating potentials”, Comm. Math. Phys., 253:3 (2005), 611–631 | DOI | MR | Zbl
[11] Killip R., Simon B., “Sum rules for Jacobi matrices and their application to spectral theory”, Ann. of Math. (2), 158 (2003), 253–321 | DOI | MR | Zbl
[12] Pushnitski A., “Spectral shift function of the Schrodinger operator in the large coupling constant limit”, Comm. Partial Differential Equations, 25:3–4 (2000), 703–736 | DOI | MR | Zbl
[13] Safronov O., “On the absolutely continuous spectrum of multi-dimensional Schrödinger operators with slowly decaying potentials”, Comm. Math. Phys., 254:2 (2005), 361–366 | DOI | MR | Zbl
[14] Safronov O., “Multi-dimensional Schrödinger operators with some negative spectrum”, J. Funct. Anal., 238:1 (2006), 327–339 | DOI | MR | Zbl
[15] Safronov O., “Multi-dimensional Schrödinger operators with no negative spectrum”, Ann. Henri Poincaré, 7:4 (2006), 781–789 | DOI | MR | Zbl
[16] Safronov O., “Absolutely continuous spectrum of one random elliptic operator”, J. Funct. Anal., 255:3 (2008), 755–767 | DOI | MR | Zbl
[17] Safronov O., “Lower bounds on the eigenvalue sums of the Schrödinger operator and the spectral conservation law”, Probl. Mat. Anal., 45, J. Math. Sci. (N.Y.) 166:3 (2010), 300–318 | MR
[18] Safronov O., “Absolutely continuous spectrum of multi-dimensional Schrödinger operators with slowly decaying potentials”, Spectral Theory of Differential Operators, Amer. Math. Soc. Transl. Ser. 2, 225, Amer. Math. Soc., Providence, RI, 2008, 205–214 | MR | Zbl
[19] Safronov O., Stolz G., “Absolutely continuous spectrum of Schrödinger operators with potentials slowly decaying inside a cone”, J. Math. Anal. Appl., 326 (2007), 192–208 | DOI | MR | Zbl
[20] Safronov O., Vainberg B., “Estimates for negative eigenvalues of a random Schrödinger operators”, Proc. Amer. Math. Soc., 136:11 (2008), 3921–3929 | DOI | MR | Zbl
[21] Simon B., “Schrödinger operators in the twenty-first century”, Mathematical Physics 2000, Imp. Coll. Press, London, 2000, 283–288 | DOI | MR | Zbl
[22] Vainberg B. R., “Ob analiticheskikh svoistvakh rezoventy dlya odnogo klassa puchkov operatorov”, Mat. sb., 77(119):2 (1968), 259–296 | MR | Zbl
[23] Yafaev D. R., Scattering theory: some old and new problems, Lecture Notes in Math., 1735, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl