Absolutely continuous spectrum of a~one-parameter family of Schr\"odinger operators
Algebra i analiz, Tome 24 (2012) no. 6, pp. 178-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under certain conditions on the potential $V$, it is shown that the absolutely continuous spectrum of the Schrödinger operator $-\Delta+\alpha V$ is essentially supported on $[0,+\infty)$ for almost every $\alpha\in\mathbb R$.
Keywords: Schrödinger operator, spectral measure, Fourier transform, selfadjoint operator.
@article{AA_2012_24_6_a6,
     author = {O. Safronov},
     title = {Absolutely continuous spectrum of a~one-parameter family of {Schr\"odinger} operators},
     journal = {Algebra i analiz},
     pages = {178--195},
     publisher = {mathdoc},
     volume = {24},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_6_a6/}
}
TY  - JOUR
AU  - O. Safronov
TI  - Absolutely continuous spectrum of a~one-parameter family of Schr\"odinger operators
JO  - Algebra i analiz
PY  - 2012
SP  - 178
EP  - 195
VL  - 24
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_6_a6/
LA  - en
ID  - AA_2012_24_6_a6
ER  - 
%0 Journal Article
%A O. Safronov
%T Absolutely continuous spectrum of a~one-parameter family of Schr\"odinger operators
%J Algebra i analiz
%D 2012
%P 178-195
%V 24
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_6_a6/
%G en
%F AA_2012_24_6_a6
O. Safronov. Absolutely continuous spectrum of a~one-parameter family of Schr\"odinger operators. Algebra i analiz, Tome 24 (2012) no. 6, pp. 178-195. http://geodesic.mathdoc.fr/item/AA_2012_24_6_a6/

[1] Bourgain J., “On random Schrödinger operators on $\mathbb Z^2$”, Discrete Contin. Dyn. Syst., 8:1 (2002), 1–15 | DOI | MR | Zbl

[2] Bourgain J., “Random lattice Schrödinger operators with decaying potential: some higher dimensional phenomena”, Geometric Aspects of Functional Analysis (Israel Seminar 2001–2002), Lecture Notes in Math., 1807, eds. V. D. Milman, G. Schechtman, Springer, Berlin, 2003, 70–98 | DOI | MR | Zbl

[3] Deift P., Killip R., “On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials”, Comm. Math. Phys., 203:2 (1999), 341–347 | DOI | MR | Zbl

[4] Denisov S., “On the absolutely continuous spectrum of Dirac operator”, Comm. Partial Differential Equations, 29:9–10 (2004), 1403–1428 | MR | Zbl

[5] Denisov S., “Absolutely continuous spectrum of multidimensional Schrödinger operator”, Int. Math. Res. Notices, 2004:74 (2004), 3963–3982 | DOI | MR | Zbl

[6] Denisov S., “On the preservation of absolutely continuous spectrum for Schrödinger operators”, J. Funct. Anal., 231:1 (2006), 143–156 | DOI | MR | Zbl

[7] Denisov S., “Schrödinger operators and associated hyperbolic pencils”, J. Funct. Anal., 254 (2008), 2186–2226 | DOI | MR | Zbl

[8] Frank R. L., Safronov O., “Absolutely continuous spectrum of a class of random nonergodic Schrödinger operators”, Int. Math. Res. Notices, 2005:42 (2005), 2559–2577 | DOI | MR | Zbl

[9] Denisov S., Kiselev A., “Spectral properties of the Schrödinger operators with decaying potentials”, Spectral Theory and Mathematical Physics, A Festschrift in Honor of Barry Simon's 60th Birthday, Proc. Sympos. Pure Math., 76, Part 2, Amer. Math. Soc., Providence, RI, 2007, 565–589 | DOI | MR | Zbl

[10] Laptev A., Naboko S., Safronov O., “Absolutely continuous spectrum of Schrödinger operators with slowly decaying and oscillating potentials”, Comm. Math. Phys., 253:3 (2005), 611–631 | DOI | MR | Zbl

[11] Killip R., Simon B., “Sum rules for Jacobi matrices and their application to spectral theory”, Ann. of Math. (2), 158 (2003), 253–321 | DOI | MR | Zbl

[12] Pushnitski A., “Spectral shift function of the Schrodinger operator in the large coupling constant limit”, Comm. Partial Differential Equations, 25:3–4 (2000), 703–736 | DOI | MR | Zbl

[13] Safronov O., “On the absolutely continuous spectrum of multi-dimensional Schrödinger operators with slowly decaying potentials”, Comm. Math. Phys., 254:2 (2005), 361–366 | DOI | MR | Zbl

[14] Safronov O., “Multi-dimensional Schrödinger operators with some negative spectrum”, J. Funct. Anal., 238:1 (2006), 327–339 | DOI | MR | Zbl

[15] Safronov O., “Multi-dimensional Schrödinger operators with no negative spectrum”, Ann. Henri Poincaré, 7:4 (2006), 781–789 | DOI | MR | Zbl

[16] Safronov O., “Absolutely continuous spectrum of one random elliptic operator”, J. Funct. Anal., 255:3 (2008), 755–767 | DOI | MR | Zbl

[17] Safronov O., “Lower bounds on the eigenvalue sums of the Schrödinger operator and the spectral conservation law”, Probl. Mat. Anal., 45, J. Math. Sci. (N.Y.) 166:3 (2010), 300–318 | MR

[18] Safronov O., “Absolutely continuous spectrum of multi-dimensional Schrödinger operators with slowly decaying potentials”, Spectral Theory of Differential Operators, Amer. Math. Soc. Transl. Ser. 2, 225, Amer. Math. Soc., Providence, RI, 2008, 205–214 | MR | Zbl

[19] Safronov O., Stolz G., “Absolutely continuous spectrum of Schrödinger operators with potentials slowly decaying inside a cone”, J. Math. Anal. Appl., 326 (2007), 192–208 | DOI | MR | Zbl

[20] Safronov O., Vainberg B., “Estimates for negative eigenvalues of a random Schrödinger operators”, Proc. Amer. Math. Soc., 136:11 (2008), 3921–3929 | DOI | MR | Zbl

[21] Simon B., “Schrödinger operators in the twenty-first century”, Mathematical Physics 2000, Imp. Coll. Press, London, 2000, 283–288 | DOI | MR | Zbl

[22] Vainberg B. R., “Ob analiticheskikh svoistvakh rezoventy dlya odnogo klassa puchkov operatorov”, Mat. sb., 77(119):2 (1968), 259–296 | MR | Zbl

[23] Yafaev D. R., Scattering theory: some old and new problems, Lecture Notes in Math., 1735, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl