The fractional Riesz transform and an exponential potential
Algebra i analiz, Tome 24 (2012) no. 6, pp. 77-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the $s$-dimensional Riesz transform of a finite measure $\mu$ in $\mathbf R^d$, with $s\in(d-1,d)$. We show that the boundedness of the Riesz transform of $\mu$ yields a weak type estimate for the Wolff potential $\mathcal W_{\Phi,s}(\mu)(x)=\int_0^\infty\Phi\bigl(\frac{\mu(B(x,r))}{r^s}\bigl)\frac{dr}r$, where $\Phi(t)=e^{-1/t^\beta}$ with $\beta>0$ depending on $s$ and $d$. In particular, this weak type estimate implies that $\mathcal W_{\Phi,s}(\mu)$ is finite $\mu$-almost everywhere. As an application, we obtain an upper bound for the Calderón–Zygmund capacity $\gamma_s$ in terms of the non-linear capacity associated to the gauge $\Phi$. It appears to be the first result of this type for $s>1$.
Keywords: Riesz transform, Calderón–Zygmund capacity, nonlinear capacity, Wolff potential, totally lower irregular measure.
@article{AA_2012_24_6_a3,
     author = {B. Jaye and F. Nazarov and A. Volberg},
     title = {The fractional {Riesz} transform and an exponential potential},
     journal = {Algebra i analiz},
     pages = {77--123},
     publisher = {mathdoc},
     volume = {24},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_6_a3/}
}
TY  - JOUR
AU  - B. Jaye
AU  - F. Nazarov
AU  - A. Volberg
TI  - The fractional Riesz transform and an exponential potential
JO  - Algebra i analiz
PY  - 2012
SP  - 77
EP  - 123
VL  - 24
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_6_a3/
LA  - en
ID  - AA_2012_24_6_a3
ER  - 
%0 Journal Article
%A B. Jaye
%A F. Nazarov
%A A. Volberg
%T The fractional Riesz transform and an exponential potential
%J Algebra i analiz
%D 2012
%P 77-123
%V 24
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_6_a3/
%G en
%F AA_2012_24_6_a3
B. Jaye; F. Nazarov; A. Volberg. The fractional Riesz transform and an exponential potential. Algebra i analiz, Tome 24 (2012) no. 6, pp. 77-123. http://geodesic.mathdoc.fr/item/AA_2012_24_6_a3/

[1] Adams D. R., Eiderman V. Y., “Singular operators with antisymmetric kernels, related capacities, and Wolff potentials”, Int. Math. Res. Notices, 2012 (to appear) , arXiv: 1012.2877

[2] Adams D. R., Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer, Berlin, 1996 | DOI | MR

[3] Eiderman V., Nazarov F., Volberg A., “Vector-valued Riesz potentials: Cartan-type estimates and related capacities”, Proc. Lond. Math. Soc. (3), 101:3 (2010), 727–758, arXiv: 0801.1855 | DOI | MR | Zbl

[4] Eiderman V., Nazarov F., Volberg A., The $s$-Riesz transform of an $s$-dimensional measure in $\mathbb R^2$ is unbounded for $12$, Preprint, 2011, arXiv: 1109.2260

[5] Eiderman V., Volberg A., “$L^2$-norm and estimates from below for Riesz transforms on Cantor sets”, Indiana Univ. Math. J., 60:4 (2011), 1077–1112, arXiv: 1012.0941 | MR | Zbl

[6] Farag H., “The Riesz kernels do not give rise to higher-dimensional analogues of the Menger–Melnikov curvature”, Publ. Mat., 43:1 (1999), 251–260 | MR | Zbl

[7] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[8] Mateu J., Prat L., Verdera J., “The capacity associated to signed Riesz kernels, and Wolff potentials”, J. Reine Angew. Math., 578 (2005), 201–223, arXiv: math/0411441 | DOI | MR | Zbl

[9] Mattila P., Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[10] Mattila P., “Cauchy singular integrals and rectifiability in measures of the plane”, Adv. Math., 115:1 (1995), 1–34 | DOI | MR | Zbl

[11] Mattila P., Preiss D., “Rectifiable measures in $\mathbf R^n$ and existence of principal values for singular integrals”, J. London Math. Soc. (2), 52:3 (1995), 482–496 | DOI | MR | Zbl

[12] Nazarov F., Peres Y., Volberg A., “The power law for the Buffon needle probability of the four-corner Cantor set”, Algebra i analiz, 22:1 (2010), 82–97, arXiv: 0801.2942 | MR | Zbl

[13] Nazarov F., Treil S., Volberg A., “Cauchy integral and Calderón–Zygmund operators on nonhomogeneous spaces”, Int. Math. Res. Notices, 1997:15 (1997), 703–726 | DOI | MR | Zbl

[14] Nazarov F., Treil S., Volberg A., “The $T(b)$-theorem on non-homogeneous spaces”, Acta Math., 190:2 (2003), 151–239 | DOI | MR | Zbl

[15] Stein E. M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR

[16] Tao T., “A quantitative version of the Besicovitch projection theorem via multiscale analysis”, Proc. Lond. Math. Soc. (3), 98:3 (2009), 559–584, arXiv: 0706.2646 | DOI | MR | Zbl

[17] Tolsa X., “Calderón–Zygmund capacities and Wolff potentials on Cantor sets”, J. Geom. Anal., 21:1 (2011), 195–223, arXiv: 1001.2986 | DOI | MR | Zbl

[18] Vihtilä M., “The boundedness of Riesz $s$-transforms of measures in $\mathbb R^n$”, Proc. Amer. Math. Soc., 124:12 (1996), 3797–3804 | DOI | MR | Zbl