Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2012_24_6_a3, author = {B. Jaye and F. Nazarov and A. Volberg}, title = {The fractional {Riesz} transform and an exponential potential}, journal = {Algebra i analiz}, pages = {77--123}, publisher = {mathdoc}, volume = {24}, number = {6}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2012_24_6_a3/} }
B. Jaye; F. Nazarov; A. Volberg. The fractional Riesz transform and an exponential potential. Algebra i analiz, Tome 24 (2012) no. 6, pp. 77-123. http://geodesic.mathdoc.fr/item/AA_2012_24_6_a3/
[1] Adams D. R., Eiderman V. Y., “Singular operators with antisymmetric kernels, related capacities, and Wolff potentials”, Int. Math. Res. Notices, 2012 (to appear) , arXiv: 1012.2877
[2] Adams D. R., Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer, Berlin, 1996 | DOI | MR
[3] Eiderman V., Nazarov F., Volberg A., “Vector-valued Riesz potentials: Cartan-type estimates and related capacities”, Proc. Lond. Math. Soc. (3), 101:3 (2010), 727–758, arXiv: 0801.1855 | DOI | MR | Zbl
[4] Eiderman V., Nazarov F., Volberg A., The $s$-Riesz transform of an $s$-dimensional measure in $\mathbb R^2$ is unbounded for $12$, Preprint, 2011, arXiv: 1109.2260
[5] Eiderman V., Volberg A., “$L^2$-norm and estimates from below for Riesz transforms on Cantor sets”, Indiana Univ. Math. J., 60:4 (2011), 1077–1112, arXiv: 1012.0941 | MR | Zbl
[6] Farag H., “The Riesz kernels do not give rise to higher-dimensional analogues of the Menger–Melnikov curvature”, Publ. Mat., 43:1 (1999), 251–260 | MR | Zbl
[7] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl
[8] Mateu J., Prat L., Verdera J., “The capacity associated to signed Riesz kernels, and Wolff potentials”, J. Reine Angew. Math., 578 (2005), 201–223, arXiv: math/0411441 | DOI | MR | Zbl
[9] Mattila P., Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[10] Mattila P., “Cauchy singular integrals and rectifiability in measures of the plane”, Adv. Math., 115:1 (1995), 1–34 | DOI | MR | Zbl
[11] Mattila P., Preiss D., “Rectifiable measures in $\mathbf R^n$ and existence of principal values for singular integrals”, J. London Math. Soc. (2), 52:3 (1995), 482–496 | DOI | MR | Zbl
[12] Nazarov F., Peres Y., Volberg A., “The power law for the Buffon needle probability of the four-corner Cantor set”, Algebra i analiz, 22:1 (2010), 82–97, arXiv: 0801.2942 | MR | Zbl
[13] Nazarov F., Treil S., Volberg A., “Cauchy integral and Calderón–Zygmund operators on nonhomogeneous spaces”, Int. Math. Res. Notices, 1997:15 (1997), 703–726 | DOI | MR | Zbl
[14] Nazarov F., Treil S., Volberg A., “The $T(b)$-theorem on non-homogeneous spaces”, Acta Math., 190:2 (2003), 151–239 | DOI | MR | Zbl
[15] Stein E. M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR
[16] Tao T., “A quantitative version of the Besicovitch projection theorem via multiscale analysis”, Proc. Lond. Math. Soc. (3), 98:3 (2009), 559–584, arXiv: 0706.2646 | DOI | MR | Zbl
[17] Tolsa X., “Calderón–Zygmund capacities and Wolff potentials on Cantor sets”, J. Geom. Anal., 21:1 (2011), 195–223, arXiv: 1001.2986 | DOI | MR | Zbl
[18] Vihtilä M., “The boundedness of Riesz $s$-transforms of measures in $\mathbb R^n$”, Proc. Amer. Math. Soc., 124:12 (1996), 3797–3804 | DOI | MR | Zbl