Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2012_24_6_a1, author = {I. A. Dynnikov and V. A. Shastin}, title = {On independence of some pseudocharacters on braid groups}, journal = {Algebra i analiz}, pages = {21--41}, publisher = {mathdoc}, volume = {24}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2012_24_6_a1/} }
I. A. Dynnikov; V. A. Shastin. On independence of some pseudocharacters on braid groups. Algebra i analiz, Tome 24 (2012) no. 6, pp. 21-41. http://geodesic.mathdoc.fr/item/AA_2012_24_6_a1/
[1] Faĭziev V. A., “The stability of the equation $f(xy)-f(x)-f(y)=0$ on groups”, Acta Math. Univ. Comenian. (N.S.), 69:1 (2000), 127–135 | MR
[2] Malyutin A. V., “Psevdokharaktery grupp kos i prostota zatseplenii”, Algebra i analiz, 21:2 (2009), 113–135 | MR | Zbl
[3] Bestvina M., Fujiwara K., “Bounded cohomology of subgroups of mapping class groups”, Geom. Topol., 6 (2002), 69–89 | DOI | MR | Zbl
[4] Epstein D. B. A., Fujiwara K., “The second bounded cohomology of word-hyperbolic groups”, Topology, 36 (1997), 1275–1289 | DOI | MR | Zbl
[5] Malyutin A. V., “Operatory prostranstv psevdokharakterov grupp kos”, Algebra i analiz, 21:2 (2009), 136–165 | MR | Zbl
[6] Dehornoy P., “Braid groups and left distributive operations”, Trans. Amer. Math. Soc., 345:1 (1994), 115–150 | DOI | MR | Zbl
[7] Short H., Wiest B., “Orderings of mapping class groups after Thurston”, Enseign. Math. (2), 46:3–4 (2000), 279–312 | MR | Zbl
[8] Malyutin A. V., “Zakruchennost (zamknutykh) kos”, Algebra i analiz, 16:5 (2004), 59–91 | MR | Zbl
[9] Berrick A. J., Cohen F. R., Wong Y. L., Wu J., “Configurations, braids, and homotopy groups”, J. Amer. Math. Soc., 19:2 (2006), 265–326 | DOI | MR | Zbl
[10] Murasugi K., Transl. from the 1993 Japanese original by Bohdan Kurpita, Birkhäuser Boston, Inc., Boston, MA, 1996 | MR | Zbl
[11] Gambaudo J.-M., Ghys É., “Braids and signatures”, Bull. Soc. Math. France, 133:4 (2005), 541–579 | MR
[12] Honda K., Kazez W., Matić G., “Right-veering diffeomorphisms of compact surfaces with boundary. II”, Geom. Topol., 12:4 (2008), 2057–2094 | DOI | MR | Zbl
[13] Fenn R., Greene M. T., Rolfsen D., Rourke C., Wiest B., “Ordering the braid groups”, Pacific J. Math., 191:1 (1999), 49–74 | DOI | MR | Zbl
[14] Dehornoy P., Dynnikov I., Rolfsen D, Wiest B., Ordering braids, Math. Surveys Monogr., 148, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[15] Birman J. S., Braids, links, and mapping class groups, Ann. of Math. Stud., 82, Princeton Univ. Press, Princeton, NJ; Univ. Tokyo Press, Tokyo, 1974 | MR
[16] Thurston W. P., “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc. (N.S.), 19 (1988), 417–431 | DOI | MR | Zbl
[17] González-Meneses J., “The $n$th root of a braid is unique up to conjugacy”, Algebr. Geom. Topol., 3 (2003), 1103–1118 | DOI | MR | Zbl
[18] Bestvina M., Handel M., “Train-tracks for surface homeomorphisms”, Topology, 34 (1995), 109–140 | DOI | MR | Zbl
[19] Gordon C. McA., Litherland R. A., Murasugi K., “Signatures of covering links”, Canad. J. Math., 33 (1981), 381–394 | DOI | MR | Zbl