Systems of subspaces in Hilbert space that obey certain conditions, on their pairwise angles
Algebra i analiz, Tome 24 (2012) no. 5, pp. 181-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2012_24_5_a7,
     author = {A. V. Strelets and I. S. Feshchenko},
     title = {Systems of subspaces in {Hilbert} space that obey certain conditions, on their pairwise angles},
     journal = {Algebra i analiz},
     pages = {181--214},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_5_a7/}
}
TY  - JOUR
AU  - A. V. Strelets
AU  - I. S. Feshchenko
TI  - Systems of subspaces in Hilbert space that obey certain conditions, on their pairwise angles
JO  - Algebra i analiz
PY  - 2012
SP  - 181
EP  - 214
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_5_a7/
LA  - ru
ID  - AA_2012_24_5_a7
ER  - 
%0 Journal Article
%A A. V. Strelets
%A I. S. Feshchenko
%T Systems of subspaces in Hilbert space that obey certain conditions, on their pairwise angles
%J Algebra i analiz
%D 2012
%P 181-214
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_5_a7/
%G ru
%F AA_2012_24_5_a7
A. V. Strelets; I. S. Feshchenko. Systems of subspaces in Hilbert space that obey certain conditions, on their pairwise angles. Algebra i analiz, Tome 24 (2012) no. 5, pp. 181-214. http://geodesic.mathdoc.fr/item/AA_2012_24_5_a7/

[1] Gel'fand I. M., Ponomarev V. A., “Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space”, Hilbert Space Operators and Operator Algebras (Tihany, 1970), Colloq. Math. Soc. Janos Bolyai, 5, North-Holland, Amsterdam, 1972, 163–237 | MR

[2] Graham J. J., Modular representations of Hecke algebras and related algebras, Ph. D. thesis, Univ. Sydney, 1995

[3] Halmos P. R., “Two subspaces”, Trans. Amer. Math. Soc., 144 (1969), 381–389 | DOI | MR | Zbl

[4] Kruglyak S. A., Samoĭlenko Yu. S., “On complexity of description of representations of $*$-algebras generated by idempotents”, Proc. Amer. Math. Soc., 128:6 (2000), 1655–1664 | DOI | MR

[5] Ostrovskiĭ V., Samoĭlenko Yu., Introduction to the theory of representations of finitely presented $\ast$-algebras, v. I, Rev. Math. and Math. Phys., 11, Representations by bounded operators, Harwood Acad. Publ., Amsterdam, 1999 | MR

[6] Sunder V. S., “$N$ subspaces”, Canad. J. Math., 40 (1988), 38–54 | DOI | MR | Zbl

[7] Temperley H. N. V., Lieb E. H., “Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem”, Proc. Roy. Soc. London Ser. A, 322 (1971), 251–280 | DOI | MR | Zbl

[8] Kruglyak S. A., Samoilenko Yu. S., “Ob unitarnoi ekvivalentnosti naborov samosopryazhennykh operatorov”, Funkts. anal. i ego pril., 14:1 (1980), 60–62 | MR | Zbl

[9] Faddeev D. K. (red.), Issledovaniya po teorii predstavlenii, Zap. nauch. semin. LOMI, 28, 1972 | MR

[10] Samoilenko Yu. S., Strelets A. V., “O prostykh $n$-kakh podprostranstv gilbertova prostranstva”, Ukr. mat. zh., 61:12 (2009), 1668–1703 | MR