Unitary Steinberg group is centrally closed
Algebra i analiz, Tome 24 (2012) no. 5, pp. 124-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2012_24_5_a4,
     author = {A. V. Lavrenov},
     title = {Unitary {Steinberg} group is centrally closed},
     journal = {Algebra i analiz},
     pages = {124--140},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_5_a4/}
}
TY  - JOUR
AU  - A. V. Lavrenov
TI  - Unitary Steinberg group is centrally closed
JO  - Algebra i analiz
PY  - 2012
SP  - 124
EP  - 140
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_5_a4/
LA  - ru
ID  - AA_2012_24_5_a4
ER  - 
%0 Journal Article
%A A. V. Lavrenov
%T Unitary Steinberg group is centrally closed
%J Algebra i analiz
%D 2012
%P 124-140
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_5_a4/
%G ru
%F AA_2012_24_5_a4
A. V. Lavrenov. Unitary Steinberg group is centrally closed. Algebra i analiz, Tome 24 (2012) no. 5, pp. 124-140. http://geodesic.mathdoc.fr/item/AA_2012_24_5_a4/

[1] Dybkova E. V., Podgruppy giperbolicheskikh unitarnykh grupp, Dokt. dis., S.-Peterburg. gos. un-t, SPb., 2006

[2] Milnor Dzh., Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | MR | Zbl

[3] Petrov V. A., “Nechetnye unitarnye gruppy”, Zap. nauch. semin. POMI, 305, 2003, 195–225 | MR | Zbl

[4] Petrov V. A., Nadgruppy klassicheskikh grupp, Kand. dis., S.-Peterburg. gos. un-t, SPb., 2005

[5] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[6] Tulenbaev M. S., “Multiplikator Shura gruppy elementarnykh matrits konechnogo poryadka”, Zap. nauch. semin. LOMI, 86, 1979, 162–169 | MR | Zbl

[7] Bak A., The stable structure of quadratic modules, Thesis, Columbia Univ., 1969

[8] Bak A., “On modules with quadratic forms”, Algebraic $K$-Theory and Its Geometric Applications (Hull, 1969), Springer-Verlag, Berlin, 1969, 55–66 | DOI | MR

[9] Bak A., $K$-theory of forms, Ann. of Math. Stud., 98, Princeton Univ. Press, Princeton, NJ, 1981 | MR | Zbl

[10] Bak A., Vavilov N., “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[11] Hahn A., O'Meara O., The classical groups and $K$-theory, Grundlehren Math. Wiss., 291, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl

[12] Hazrat R., “Dimension theory and nonstable $\mathrm K_1$ of quadratic modules”, $K$-Theory, 27 (2002), 293–328 | DOI | MR | Zbl

[13] Hazrat R., Vavilov N., “Bak's work on $K$-theory of rings”, J. $K$-Theory, 4 (2009), 1–65 | DOI | MR | Zbl

[14] Hazrat R., Vavilov N., Zhang Zuhong, “Relative unitary commutator calculus, and applications”, J. Algebra, 343 (2011), 107–137 | DOI | MR | Zbl

[15] van der Kallen W., “Another presentation for Steinberg groups”, Indag. Math., 39 (1977), 304–312 | MR

[16] Stein M., “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93 (1971), 965–1004 | DOI | MR | Zbl

[17] Stepanov A., Vavilov N., “Decomposition of transvections: a theme with variations”, $K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[18] Tang Guoping, “Hermitian groups and $K$-theory”, $K$-Theory, 13 (1998), 209–267 | DOI | MR | Zbl