An operator equation characterizing the Laplacian
Algebra i analiz, Tome 24 (2012) no. 4, pp. 137-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Laplace operator on $\mathbb R^n$ satisfies the equation $$ \Delta(fg)(x)=(\Delta f)(x)g(x)+f(x)(\Delta g)(x)+2\langle f'(x),g'(x)\rangle $$ for all $f,g\in C^2(\mathbb R^n,\mathbb R)$ and $x\in\mathbb R^n$. In the paper, an operator equation generalizing this product formula is considered. Suppose $T\colon C^2(\mathbb R^n,\mathbb R)\to C(\mathbb R^n,\mathbb R)$ and $A\colon C^2(\mathbb R^n,\mathbb R)\to C(\mathbb R^n,\mathbb R^n)$ are operators satisfying the equation \begin{equation} T(fg)(x)=(Tf)(x)g(x)+f(x)(Tg)(x)+\langle(Af)(x),(Ag)(x)\rangle \tag{1} \end{equation} for all $f,g\in C^2(\mathbb R^n,\mathbb R)$ and $x\in\mathbb R^n$. Assume, in addition, that $T$ is $O(n)$-invariant and annihilates the affine functions, and that $A$ is nondegenerate. Then $T$ is a multiple of the Laplacian on $\mathbb R^n$, and $A$ a multiple of the derivative, $$ (Tf)(x)=\frac{d(\|x\|)^2}2(\Delta f)(x),\quad (Af)(x)=d(\|x\|)f'(x), $$ where $d\in C(\mathbb R_+,\mathbb R)$ is a continuous function. The solutions are also described if $T$ is not $O(n)$-invariant or does not annihilate the affine functions. For this, all operators $(T,A)$ satisfying (1) for scalar operators $A\colon C^2(\mathbb R^n,\mathbb R)\to C(\mathbb R^n,\mathbb R)$ are determined. The map $A$, both in the vector and the scalar case, is closely related to $T$ and there are precisely three different types of solution operators $(T,A)$. No continuity or linearity requirement is imposed on $T$ or $A$.
Keywords: Laplace operator, second order Leibniz rule, operator functional equations.
@article{AA_2012_24_4_a5,
     author = {H. K\"onig and V. Milman},
     title = {An operator equation characterizing the {Laplacian}},
     journal = {Algebra i analiz},
     pages = {137--155},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_4_a5/}
}
TY  - JOUR
AU  - H. König
AU  - V. Milman
TI  - An operator equation characterizing the Laplacian
JO  - Algebra i analiz
PY  - 2012
SP  - 137
EP  - 155
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_4_a5/
LA  - en
ID  - AA_2012_24_4_a5
ER  - 
%0 Journal Article
%A H. König
%A V. Milman
%T An operator equation characterizing the Laplacian
%J Algebra i analiz
%D 2012
%P 137-155
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_4_a5/
%G en
%F AA_2012_24_4_a5
H. König; V. Milman. An operator equation characterizing the Laplacian. Algebra i analiz, Tome 24 (2012) no. 4, pp. 137-155. http://geodesic.mathdoc.fr/item/AA_2012_24_4_a5/

[1] Aczél J., Lectures on functional equations and their applications, Math. Sci. Engrg., 19, Acad. Press, New York–London, 1966 | MR

[2] Alesker S., Artstein-Avidan S., Milman V., “A characterization of the Fourier transform and related topics”, Linear and Complex Analysis, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, RI, 2009, 11–26 | MR | Zbl

[3] Artstein-Avidan S., König H., Milman V., “The chain rule as a functional equation”, J. Funct. Anal., 259 (2010), 2999–3024 | DOI | MR | Zbl

[4] Artstein-Avidan S., Milman V., “The concept of duality in convex analysis, and the characterization of the Legendre transform”, Ann. of Math. (2), 169 (2009), 661–674 | DOI | MR | Zbl

[5] Artstein-Avidan S., Milman V., “A characterization of the concept of duality”, Electron. Res. Announc. Math. Sci., 14 (2007), 42–59 | MR

[6] Artstein-Avidan S., Milman V., “The concept of duality for measure projections of convex bodies”, J. Funct. Anal., 254 (2008), 2648–2666 | DOI | MR | Zbl

[7] Goldmann H., Šemrl P., “Multiplicative derivations on $C(X)$”, Monatsh. Math., 121 (1996), 189–197 | DOI | MR | Zbl

[8] König H., Milman V., “Characterizing the derivative and the entropy function by the Leibniz rule, with an appendix by D. Faifman”, J. Funct. Anal., 261 (2011), 1325–1344 | DOI | MR

[9] König H., Milman V., An operator equation generalizing the Leibniz rule for the second derivative, (submitted, 2011)