Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2012_24_4_a5, author = {H. K\"onig and V. Milman}, title = {An operator equation characterizing the {Laplacian}}, journal = {Algebra i analiz}, pages = {137--155}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2012_24_4_a5/} }
H. König; V. Milman. An operator equation characterizing the Laplacian. Algebra i analiz, Tome 24 (2012) no. 4, pp. 137-155. http://geodesic.mathdoc.fr/item/AA_2012_24_4_a5/
[1] Aczél J., Lectures on functional equations and their applications, Math. Sci. Engrg., 19, Acad. Press, New York–London, 1966 | MR
[2] Alesker S., Artstein-Avidan S., Milman V., “A characterization of the Fourier transform and related topics”, Linear and Complex Analysis, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, RI, 2009, 11–26 | MR | Zbl
[3] Artstein-Avidan S., König H., Milman V., “The chain rule as a functional equation”, J. Funct. Anal., 259 (2010), 2999–3024 | DOI | MR | Zbl
[4] Artstein-Avidan S., Milman V., “The concept of duality in convex analysis, and the characterization of the Legendre transform”, Ann. of Math. (2), 169 (2009), 661–674 | DOI | MR | Zbl
[5] Artstein-Avidan S., Milman V., “A characterization of the concept of duality”, Electron. Res. Announc. Math. Sci., 14 (2007), 42–59 | MR
[6] Artstein-Avidan S., Milman V., “The concept of duality for measure projections of convex bodies”, J. Funct. Anal., 254 (2008), 2648–2666 | DOI | MR | Zbl
[7] Goldmann H., Šemrl P., “Multiplicative derivations on $C(X)$”, Monatsh. Math., 121 (1996), 189–197 | DOI | MR | Zbl
[8] König H., Milman V., “Characterizing the derivative and the entropy function by the Leibniz rule, with an appendix by D. Faifman”, J. Funct. Anal., 261 (2011), 1325–1344 | DOI | MR
[9] König H., Milman V., An operator equation generalizing the Leibniz rule for the second derivative, (submitted, 2011)