Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2012_24_4_a2, author = {L. Dieulefait and M. Mink and B. Z. Moroz}, title = {On an elliptic curve defined over $\mathbb Q(\sqrt{-23})$}, journal = {Algebra i analiz}, pages = {64--83}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2012_24_4_a2/} }
L. Dieulefait; M. Mink; B. Z. Moroz. On an elliptic curve defined over $\mathbb Q(\sqrt{-23})$. Algebra i analiz, Tome 24 (2012) no. 4, pp. 64-83. http://geodesic.mathdoc.fr/item/AA_2012_24_4_a2/
[1] Berger T., Harcos G., “$l$-adic representations associated to modular forms over imaginary quadratic fields”, Int. Math. Res. Not. IMRN, 2007, no. 23, Art. ID rnm113, 16 pp. | MR
[2] Bourbaki N., Éléments de mathématique. {\rm23. Première partie:} Les structures fondamentales de l'analyse. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples, Actualités Sci. Ind., 1261, Hermann, Paris, 1958 | MR | Zbl
[3] Breuil C., Brian C., Diamond F., Taylor R., “On the modularity of elliptic curves over $\mathbb Q$: wild 3-adic exercises”, J. Amer. Math. Soc., 14 (2001), 843–939 | DOI | MR | Zbl
[4] Cohen H., Advanced topics in computational number theory, Grad. Texts in Math., 193, Springer-Verlag, New York, 2000 | DOI | MR | Zbl
[5] Cremona J. E., “Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields”, Compositio Math., 51 (1984), 275–324 | MR | Zbl
[6] Deligne P., “La conjecture de Weil. I”, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 273–307 | DOI | MR
[7] Dieulefait L., Guerberoff L., Pacetti A., “Proving modularity for a given elliptic curve over an imaginary quadratic field”, Math. Comp., 79 (2010), 1145–1170 | DOI | MR | Zbl
[8] Elstrodt J., Grunewald F., Mennicke J., “On the group $PSL_2(\mathbb Z[i])$”, Number Theory Days, 1980 (Exeter, 1980), London Math. Soc. Lecture Note Ser., 56, Cambridge Univ. Press, Cambridge–New York, 1982, 255–283 | MR
[9] Faltings G., “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math., 73 (1983), 349–366 | DOI | MR | Zbl
[10] Jacquet H., Shalika J. A., “On Euler products and the classification of automorphic representations. I”, Amer. J. Math., 103 (1981), 499–558 | DOI | MR | Zbl
[11] Jarvis F., Manoharmayum J., “On the modularity of supersingular elliptic curves over certain totally real number fields”, J. Number Theory, 128 (2008), 589–618 | DOI | MR | Zbl
[12] Lingham M., Modular forms and elliptic curves over imaginary quadratic fields, Ph. D. Thesis, Univ. Nottingham, 2005
[13] Mink M., Beweis der Hasse–Weilschen Vermutung für eine elliptische Kurve über einem imaginär-quadratischen Körper, Diplomarbeit, Rheinische Friedrich-Wilhems-Univ., Bonn, 2010
[14] PARI/GP, Version 2.4.3, The PARI Group, Bordeaux pari.math.u-bordeaux.fr
[15] Piatetski-Shapiro I. I., “Multiplicity one theorems”, Proc. Sympos. Pure Math., 33, pt. 1, Amer. Math. Soc., Providence, RI, 1979, 209–212 | MR
[16] Scheutzow A., “Computing rational cohomology and Hecke eigenvalues for Bianchi groups”, J. Number Theory, 40 (1992), 317–328 | DOI | MR | Zbl
[17] Schütt M., “On the modularity of three Calabi–Yau threefolds with bad reduction at 11”, Canad. Math. Bull., 49 (2006), 296–312 | DOI | MR
[18] Serre J.-P., Abelian $l$-adic representations and elliptic curves, W. A. Benjamin, Inc., New York–Amsterdam, 1968 | MR | Zbl
[19] Serre J.-P., “Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures)”, Séminaire Delange-Pisot-Poitou, Théoire des nombres, 11, no. 2, 1969/70, exp. no. 19, 15 pp.
[20] Serre J.-P., “Résume des cours de 1984–1985”, Annuaire du Collége de France, 1985, 85–90
[21] Serre J.-P., Représentations linéaires sur des anneaux locaux, d'apres Carayol, Prépubl. no. 49, Inst. Math. Jussieu, Univ. Paris VI et Paris VII/CNRS, 1995
[22] Taylor R., “$l$-adic representations associated to modular forms over imaginary quadratic fields. II”, Invent. Math., 116 (1994), 619–643 | DOI | MR | Zbl
[23] Weil A., Dirichlet series and automorphic forms, Lecture Notes in Math., 189, Springer-Verlag, Berlin etc., 1971 | Zbl
[24] Wiles A., “Modular elliptic curves and Fermat's last theorem”, Ann. of Math. (2), 141 (1995), 443–551 | DOI | MR | Zbl