On an elliptic curve defined over $\mathbb Q(\sqrt{-23})$
Algebra i analiz, Tome 24 (2012) no. 4, pp. 64-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, the first three examples were found of elliptic curves without complex multiplication and defined over an imaginary quadratic field that have been proved to satisfy the Hasse–Weil conjecture. In the paper, the same algorithm is employed to prove the modularity and thereby the Hasse–Weil conjecture for the fourth elliptic curve without CM defined over the imaginary quadratic field $\mathbb Q(\sqrt{-23})$.
Keywords: Hasse–Weil conjecture, elliptic curve.
@article{AA_2012_24_4_a2,
     author = {L. Dieulefait and M. Mink and B. Z. Moroz},
     title = {On an elliptic curve defined over $\mathbb Q(\sqrt{-23})$},
     journal = {Algebra i analiz},
     pages = {64--83},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_4_a2/}
}
TY  - JOUR
AU  - L. Dieulefait
AU  - M. Mink
AU  - B. Z. Moroz
TI  - On an elliptic curve defined over $\mathbb Q(\sqrt{-23})$
JO  - Algebra i analiz
PY  - 2012
SP  - 64
EP  - 83
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_4_a2/
LA  - en
ID  - AA_2012_24_4_a2
ER  - 
%0 Journal Article
%A L. Dieulefait
%A M. Mink
%A B. Z. Moroz
%T On an elliptic curve defined over $\mathbb Q(\sqrt{-23})$
%J Algebra i analiz
%D 2012
%P 64-83
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_4_a2/
%G en
%F AA_2012_24_4_a2
L. Dieulefait; M. Mink; B. Z. Moroz. On an elliptic curve defined over $\mathbb Q(\sqrt{-23})$. Algebra i analiz, Tome 24 (2012) no. 4, pp. 64-83. http://geodesic.mathdoc.fr/item/AA_2012_24_4_a2/

[1] Berger T., Harcos G., “$l$-adic representations associated to modular forms over imaginary quadratic fields”, Int. Math. Res. Not. IMRN, 2007, no. 23, Art. ID rnm113, 16 pp. | MR

[2] Bourbaki N., Éléments de mathématique. {\rm23. Première partie:} Les structures fondamentales de l'analyse. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples, Actualités Sci. Ind., 1261, Hermann, Paris, 1958 | MR | Zbl

[3] Breuil C., Brian C., Diamond F., Taylor R., “On the modularity of elliptic curves over $\mathbb Q$: wild 3-adic exercises”, J. Amer. Math. Soc., 14 (2001), 843–939 | DOI | MR | Zbl

[4] Cohen H., Advanced topics in computational number theory, Grad. Texts in Math., 193, Springer-Verlag, New York, 2000 | DOI | MR | Zbl

[5] Cremona J. E., “Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields”, Compositio Math., 51 (1984), 275–324 | MR | Zbl

[6] Deligne P., “La conjecture de Weil. I”, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 273–307 | DOI | MR

[7] Dieulefait L., Guerberoff L., Pacetti A., “Proving modularity for a given elliptic curve over an imaginary quadratic field”, Math. Comp., 79 (2010), 1145–1170 | DOI | MR | Zbl

[8] Elstrodt J., Grunewald F., Mennicke J., “On the group $PSL_2(\mathbb Z[i])$”, Number Theory Days, 1980 (Exeter, 1980), London Math. Soc. Lecture Note Ser., 56, Cambridge Univ. Press, Cambridge–New York, 1982, 255–283 | MR

[9] Faltings G., “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math., 73 (1983), 349–366 | DOI | MR | Zbl

[10] Jacquet H., Shalika J. A., “On Euler products and the classification of automorphic representations. I”, Amer. J. Math., 103 (1981), 499–558 | DOI | MR | Zbl

[11] Jarvis F., Manoharmayum J., “On the modularity of supersingular elliptic curves over certain totally real number fields”, J. Number Theory, 128 (2008), 589–618 | DOI | MR | Zbl

[12] Lingham M., Modular forms and elliptic curves over imaginary quadratic fields, Ph. D. Thesis, Univ. Nottingham, 2005

[13] Mink M., Beweis der Hasse–Weilschen Vermutung für eine elliptische Kurve über einem imaginär-quadratischen Körper, Diplomarbeit, Rheinische Friedrich-Wilhems-Univ., Bonn, 2010

[14] PARI/GP, Version 2.4.3, The PARI Group, Bordeaux pari.math.u-bordeaux.fr

[15] Piatetski-Shapiro I. I., “Multiplicity one theorems”, Proc. Sympos. Pure Math., 33, pt. 1, Amer. Math. Soc., Providence, RI, 1979, 209–212 | MR

[16] Scheutzow A., “Computing rational cohomology and Hecke eigenvalues for Bianchi groups”, J. Number Theory, 40 (1992), 317–328 | DOI | MR | Zbl

[17] Schütt M., “On the modularity of three Calabi–Yau threefolds with bad reduction at 11”, Canad. Math. Bull., 49 (2006), 296–312 | DOI | MR

[18] Serre J.-P., Abelian $l$-adic representations and elliptic curves, W. A. Benjamin, Inc., New York–Amsterdam, 1968 | MR | Zbl

[19] Serre J.-P., “Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures)”, Séminaire Delange-Pisot-Poitou, Théoire des nombres, 11, no. 2, 1969/70, exp. no. 19, 15 pp.

[20] Serre J.-P., “Résume des cours de 1984–1985”, Annuaire du Collége de France, 1985, 85–90

[21] Serre J.-P., Représentations linéaires sur des anneaux locaux, d'apres Carayol, Prépubl. no. 49, Inst. Math. Jussieu, Univ. Paris VI et Paris VII/CNRS, 1995

[22] Taylor R., “$l$-adic representations associated to modular forms over imaginary quadratic fields. II”, Invent. Math., 116 (1994), 619–643 | DOI | MR | Zbl

[23] Weil A., Dirichlet series and automorphic forms, Lecture Notes in Math., 189, Springer-Verlag, Berlin etc., 1971 | Zbl

[24] Wiles A., “Modular elliptic curves and Fermat's last theorem”, Ann. of Math. (2), 141 (1995), 443–551 | DOI | MR | Zbl