Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2012_24_4_a1, author = {Yu. V. Brezhnev}, title = {Elliptic solitons, {Fuchsian} equations, and algorithms}, journal = {Algebra i analiz}, pages = {34--63}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2012_24_4_a1/} }
Yu. V. Brezhnev. Elliptic solitons, Fuchsian equations, and algorithms. Algebra i analiz, Tome 24 (2012) no. 4, pp. 34-63. http://geodesic.mathdoc.fr/item/AA_2012_24_4_a1/
[1] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl
[2] Berkovich L. M., Faktorizatsiya i preobrazovaniya differentsialnykh uravnenii, RKhD, M., 2002
[3] Veselov A. P., Shabat A. B., “Odevayuschaya tsepochka i spektralnaya teoriya operatora Shrëdingera”, Funkts. anal. i ego pril., 27:2 (1993), 1–21 | MR | Zbl
[4] Gelfand I. M., Dikii L. A., “Asimptotika rezolventy shturm-liuvillevskikh uravnenii i algebra uravnenii Kortevega–de Friza”, Uspekhi mat. nauk, 30:5 (1975), 67–100 | MR | Zbl
[5] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, Uspekhi mat. nauk, 36:2 (1981), 11–80 | MR | Zbl
[6] Its A. R., Matveev V. B., “Operatory Shrëdingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega–de Frisa”, Teor. i mat. fiz., 23:1 (1975), 51–68 | MR
[7] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatgiz, M., 1961
[8] Kaplanskii I., Vvedenie v differentsialnuyu algebru, IL, M., 1959
[9] Kokseter G. S. M., Mozer U. O. Dzh., Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980 | MR
[10] Puankare A., “Gruppy lineinykh uravnenii”, Izbrannye trudy, v. 3, Nauka, M., 1974, 145–234
[11] Sirota Yu. N., Smirnov A. O., “Uravnenie Goina i preobrazovanie Darbu”, Mat. zametki, 79:2 (2006), 267–277 | DOI | MR | Zbl
[12] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Ch. 2, Fizmatgiz, M., 1963
[13] Ustinov N. V., Brezhnev Yu. V., “O $\Psi$-funktsii dlya konechnozonnykh potentsialov”, Uspekhi mat. nauk, 57:1 (2002), 167–168 | MR | Zbl
[14] Acosta-Humánez P. B., Galoisian approach to supersymmetric quantum mechanics. The integrability analysis of the Schrödinger equation by means of differential Galois theory, Verlag Dr. Muller, 2010
[15] Acosta-Humánez P. B., Morales-Ruiz J.-J., Weil J.-A., “Galoisian approach to integrability of the Schrödinger equation”, Rep. Math. Phys., 67:3 (2011), 305–374 | DOI | MR | Zbl
[16] Acta Applicandae Mathematicae, 36 (1994), 1–308, (ves tom) | DOI
[17] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometric approach to nonlinear integrable equations, Springer-Verlag, 1994 | Zbl
[18] Beukers F., van der Waall A., “Lamé equations with algebraic solutions”, J. Differential Equations, 197:1 (2004), 1–25 | DOI | MR | Zbl
[19] Beukers F., “Unitary monodromy of Lamé differential operators”, Regul. Chaotic Dyn., 12:6 (2007), 630–641 | DOI | MR | Zbl
[20] Brezhnev Yu. V., “What does integrability of finite-gap or soliton potentials mean?”, Philos. Trans. R. Soc. Lond. Ser. A, 366:1867 (2008), 923–945 | DOI | MR | Zbl
[21] Brezhnev Yu. V., “Spectral/quadrature duality: Picard–Vessiot theory and finite-gap potentials”, Contemp. Math., 563, Amer. Math. Soc., Providence, RI, 2012, 1–31 | DOI | MR | Zbl
[22] Darboux G., “Sur une équation linéaire”, Compt. Rend. Acad. Sci., 94:25 (1882), 1645–1648
[23] Dickey L. A., Soliton equations and Hamiltonian systems, Adv. Ser. Math. Phys., 26, 2nd ed., World Sci. Publ. Co., Inc., River Edge, NJ, 2003 | DOI | MR | Zbl
[24] Drach J., “Détermination des cas de réduction de l'équation différentielle $\frac{d^2y}{dx^2}=[\varphi(x)+h]y$”, Compt. Rend. Acad. Sci., 168 (1919), 47–50 | Zbl
[25] Forsyth A. R., Theory of differential equations, v. 3, 4, Dover Publ., Inc., New York, 1959 | MR | Zbl
[26] Gesztesy F., Weikard R., “Picard potentials and Hill's equation on a torus”, Acta Math., 176:1 (1996), 73–107 | DOI | MR | Zbl
[27] Gesztesy F., Weikard R., “A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy”, Acta Math., 181:1 (1998), 63–108 | DOI | MR | Zbl
[28] Ivanov P., “On Lamé's equation of a particular kind”, J. Phys. A, 34 (2001), 8145–8150 | DOI | MR | Zbl
[29] Klein F., “Ueber lineare Differentialgleichungen der zweiten Ordnung”, Vorlesung, gehalten im Sommersemester 1894, Göttingen, 1894, (rukopisnoe izdanie)
[30] Kolchin E. R., “Algebraic matric groups and the Picard–Vessiot theory of homogeneous linear ordinary differential equations”, Ann. of Math. (2), 49 (1948), 1–42 | DOI | MR | Zbl
[31] Kovacic J. J., “An algorithm for solving second order linear homogeneous differential equations”, J. Symbolic Comput., 2:1 (1986), 3–43 | DOI | MR | Zbl
[32] Maier R. S., “Algebraic solutions of the Lamé equation, revisited”, J. Differential Equations, 198:1 (2004), 16–34 | DOI | MR | Zbl
[33] Maier R. S., “Lamé polynomials, hyperelliptic reductions and Lamé band structure”, Philos. Trans. R. Soc. Lond. Ser. A, 366:1867 (2008), 1115–1153 | DOI | MR | Zbl
[34] Morales-Ruiz J.-J., Differential Galois theory and non-integrability of Hamiltonian systems, Progr. Math., 179, Birkhäuser Verlag, Basel, 1999 | MR | Zbl
[35] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren Math. Wiss., 328, Springer-Verlag, Berlin, 2003 | MR | Zbl
[36] Singer M. F., “Liouvillian solutions of $n$th order homogeneous linear differential equations”, Amer. J. Math., 103 (1981), 661–682 | DOI | MR | Zbl
[37] Singer M. F., Ulmer F., “Liouvillian and algebraic solutions of second and third order linear differential equations”, J. Symbolic Comput., 16:1 (1993), 37–73 | DOI | MR | Zbl
[38] Smirnov A. O., “Elliptic solitons and Heun's equation”, The Kowalevski Property (Leeds, 2000), CRM Proc. Lecture Notes, 32, Amer. Math. Soc., Providence, RI, 2002, 287–305 | MR | Zbl
[39] Smirnov A. O., “Finite-gap solutions of the Fuchsian equations”, Lett. Math. Phys., 76 (2006), 297–316 | DOI | MR | Zbl
[40] Takemura K., “The Heun equation and the Calogero–Moser–Sutherland system. III. The finite-gap property and the monodromy”, J. Nonlinear Math. Phys., 11:1 (2004), 21–46 | DOI | MR | Zbl
[41] Thomé L. W., “Ueber lineare Differentialgleichungen mit mehrwerthigen algebraischen Coefficienten”, J. Reine Angew. Math., 115 (1895), 33–52, 119–149 ; “Ueber lineare Differentialgleichungen mit mehrwertigen algebraischen Coefficienten. 2”, J. Reine Angew. Math., 119 (1898), 131–147 | Zbl | Zbl