Mayer's transfer operator approach to Selberg's zeta function
Algebra i analiz, Tome 24 (2012) no. 4, pp. 1-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

These notes are based on three lectures given by the second author at Copenhagen University (October 2009) and at Aarhus University, Denmark (December 2009). Mostly, a survey of the results of Dieter Mayer on relationships between Selberg and Smale–Ruelle dynamical zeta functions is presented. In a special situation, the dynamical zeta function is defined for a geodesic flow on a hyperbolic plane quotient by an arithmetic cofinite discrete group. More precisely, the flow is defined for the corresponding unit tangent bundle. It turns out that the Selberg zeta function for this group can be expressed in terms of a Fredholm determinant of a classical transfer operator of the flow. The transfer operator is defined in a certain space of holomorphic functions, and its matrix representation in a natural basis is given in terms of the Riemann zeta function and the Euler gamma function.
Keywords: Mayer's transfer operator, Selberg's zeta function.
@article{AA_2012_24_4_a0,
     author = {A. Momeni and A. B. Venkov},
     title = {Mayer's transfer operator approach to {Selberg's} zeta function},
     journal = {Algebra i analiz},
     pages = {1--33},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_4_a0/}
}
TY  - JOUR
AU  - A. Momeni
AU  - A. B. Venkov
TI  - Mayer's transfer operator approach to Selberg's zeta function
JO  - Algebra i analiz
PY  - 2012
SP  - 1
EP  - 33
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_4_a0/
LA  - en
ID  - AA_2012_24_4_a0
ER  - 
%0 Journal Article
%A A. Momeni
%A A. B. Venkov
%T Mayer's transfer operator approach to Selberg's zeta function
%J Algebra i analiz
%D 2012
%P 1-33
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_4_a0/
%G en
%F AA_2012_24_4_a0
A. Momeni; A. B. Venkov. Mayer's transfer operator approach to Selberg's zeta function. Algebra i analiz, Tome 24 (2012) no. 4, pp. 1-33. http://geodesic.mathdoc.fr/item/AA_2012_24_4_a0/

[1] Adler R. L., Flatto L., “Cross section map for the geodesic flow on the modular surface”, Conference in Modern Analysis and Probability (New Haven, 1982), Contemp. Math., 26, Amer. Math. Soc., Providence, RI, 1984, 9–24 | DOI | MR

[2] Bowen R., Series C., “Markov maps associated with Fuchsian groups”, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 153–170 | DOI | MR | Zbl

[3] Chang C.-H., Mayer D., “Thermodynamic formalism and Selberg's zeta function for modular groups”, Regul. Chaotic Dyn., 5 (2000), 281–312 | DOI | MR | Zbl

[4] Efrat I., “Dynamics of the continued fraction map and the spectral theory of $SL(2,\mathbb Z)$”, Invent. Math., 114 (1993), 207–218 | DOI | MR | Zbl

[5] Gelfand I. M., Vilenkin N. Ya., Obobschennye funktsii. Vyp. 4. Nekotorye primeneniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatgiz, 1961 ; Acad. Press, New York–London, 1964 | MR

[6] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 ; Acad. Press, New York–London, 1965 | MR

[7] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, 1955, 140 pp. | MR | Zbl

[8] Lewis J., Zagier D., “Period functions and the Selberg zeta function for the modular group”, The Mathematical Beauty of Physics (Saclay, 1996), Adv. Ser. Math. Phys., 24, World Sci., Singapore, 1997, 83–97 | MR | Zbl

[9] Mayer D., “The thermodynamic formalism approach to Selberg's zeta function for $PSL(2,\mathbb Z)$”, Bull. Amer. Math. Soc. (N.S.), 25 (1991), 55–60 | DOI | MR | Zbl

[10] Mayer D., “On a zeta function related to the continued fraction transformation”, Bull. Soc. Math. France, 104 (1976), 195–203 | MR | Zbl

[11] Mayer D., “Continued fractions and related transformations”, Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (Trieste, 1989), Oxford Univ. Press, New York, 1991, 175–222 | MR

[12] Mayer D., “Thermodynamics formalism and quantum mechanics on the modular surface”, From Phase Transitions to Chaos, World Sci. Publ., River Edge, NJ, 1992, 521–529 | DOI | MR

[13] Mayer D., “On the thermodynamic formalism for the Gauss map”, Comm. Math. Phys., 130 (1990), 311–333 | DOI | MR | Zbl

[14] Ruelle D., “Dynamical zeta functions and transfer operators”, Notices Amer. Math. Soc., 49 (2002), 887–895 | MR | Zbl

[15] Ruelle D., Dynamical zeta functions for piecewise monotone maps of the interval, CRM Monogr. Ser., 4, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[16] Schaefer H. H., Topological vector spaces, The Macmillan Co., New York, 1966 | MR | Zbl

[17] Selberg A., “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc. (N.S.), 20 (1956), 47–87 | MR | Zbl

[18] Sinai Ya. G., “Gibbsovskie mery v ergodicheskoi teorii”, Uspekhi mat. nauk, 27:4 (1972), 21–64 | MR | Zbl

[19] Venkov A. B., Spektralnaya teoriya avtomorfnykh funktsii, Tr. Mat. in-ta AN SSSR, 153, 1981, 171 pp. ; Kluwer Acad. Publ. Group, Dordrecht, 1990 | MR | Zbl | Zbl

[20] Venkov A. B., “Ob avtomorfnoi matritse rasseyaniya dlya gruppy Gekke $\Gamma[2\cos(\pi/q)]$”, Tr. Mat. in-ta AN SSSR, 163, 1984, 32–36 | MR | Zbl