Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2012_24_4_a0, author = {A. Momeni and A. B. Venkov}, title = {Mayer's transfer operator approach to {Selberg's} zeta function}, journal = {Algebra i analiz}, pages = {1--33}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2012_24_4_a0/} }
A. Momeni; A. B. Venkov. Mayer's transfer operator approach to Selberg's zeta function. Algebra i analiz, Tome 24 (2012) no. 4, pp. 1-33. http://geodesic.mathdoc.fr/item/AA_2012_24_4_a0/
[1] Adler R. L., Flatto L., “Cross section map for the geodesic flow on the modular surface”, Conference in Modern Analysis and Probability (New Haven, 1982), Contemp. Math., 26, Amer. Math. Soc., Providence, RI, 1984, 9–24 | DOI | MR
[2] Bowen R., Series C., “Markov maps associated with Fuchsian groups”, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 153–170 | DOI | MR | Zbl
[3] Chang C.-H., Mayer D., “Thermodynamic formalism and Selberg's zeta function for modular groups”, Regul. Chaotic Dyn., 5 (2000), 281–312 | DOI | MR | Zbl
[4] Efrat I., “Dynamics of the continued fraction map and the spectral theory of $SL(2,\mathbb Z)$”, Invent. Math., 114 (1993), 207–218 | DOI | MR | Zbl
[5] Gelfand I. M., Vilenkin N. Ya., Obobschennye funktsii. Vyp. 4. Nekotorye primeneniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatgiz, 1961 ; Acad. Press, New York–London, 1964 | MR
[6] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 ; Acad. Press, New York–London, 1965 | MR
[7] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, 1955, 140 pp. | MR | Zbl
[8] Lewis J., Zagier D., “Period functions and the Selberg zeta function for the modular group”, The Mathematical Beauty of Physics (Saclay, 1996), Adv. Ser. Math. Phys., 24, World Sci., Singapore, 1997, 83–97 | MR | Zbl
[9] Mayer D., “The thermodynamic formalism approach to Selberg's zeta function for $PSL(2,\mathbb Z)$”, Bull. Amer. Math. Soc. (N.S.), 25 (1991), 55–60 | DOI | MR | Zbl
[10] Mayer D., “On a zeta function related to the continued fraction transformation”, Bull. Soc. Math. France, 104 (1976), 195–203 | MR | Zbl
[11] Mayer D., “Continued fractions and related transformations”, Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (Trieste, 1989), Oxford Univ. Press, New York, 1991, 175–222 | MR
[12] Mayer D., “Thermodynamics formalism and quantum mechanics on the modular surface”, From Phase Transitions to Chaos, World Sci. Publ., River Edge, NJ, 1992, 521–529 | DOI | MR
[13] Mayer D., “On the thermodynamic formalism for the Gauss map”, Comm. Math. Phys., 130 (1990), 311–333 | DOI | MR | Zbl
[14] Ruelle D., “Dynamical zeta functions and transfer operators”, Notices Amer. Math. Soc., 49 (2002), 887–895 | MR | Zbl
[15] Ruelle D., Dynamical zeta functions for piecewise monotone maps of the interval, CRM Monogr. Ser., 4, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl
[16] Schaefer H. H., Topological vector spaces, The Macmillan Co., New York, 1966 | MR | Zbl
[17] Selberg A., “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc. (N.S.), 20 (1956), 47–87 | MR | Zbl
[18] Sinai Ya. G., “Gibbsovskie mery v ergodicheskoi teorii”, Uspekhi mat. nauk, 27:4 (1972), 21–64 | MR | Zbl
[19] Venkov A. B., Spektralnaya teoriya avtomorfnykh funktsii, Tr. Mat. in-ta AN SSSR, 153, 1981, 171 pp. ; Kluwer Acad. Publ. Group, Dordrecht, 1990 | MR | Zbl | Zbl
[20] Venkov A. B., “Ob avtomorfnoi matritse rasseyaniya dlya gruppy Gekke $\Gamma[2\cos(\pi/q)]$”, Tr. Mat. in-ta AN SSSR, 163, 1984, 32–36 | MR | Zbl