Optimal regularity and free boundary regularity for the Signorini problem
Algebra i analiz, Tome 24 (2012) no. 3, pp. 1-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

A proof of the optimal regularity and free boundary regularity is announced and informally discussed for the Signorini problem for the Lamé system. The result, which is the first of its kind for a system of equations, states that if $\mathbf u=(u^1,u^2,u^3)\in W^{1,2}(B_1^+:\mathbb R^3)$ minimizes $$ J(\mathbf u)=\int_{B_1^+}|\nabla\mathbf u+\nabla^\bot \mathbf u|^2+\lambda(\operatorname{div}(\mathbf u))^2 $$ in the convex set \begin{align*} K=\big\{\mathbf u=(u^1,u^2,u^3)\in W^{1,2}(B_1^+:\mathbb R^3);\; u^3\ge0\textrm{ on }\Pi,\\ \mathbf u=f\in C^\infty(\partial B_1)\textrm{ on }(\partial B_1)^+\big\}, \end{align*} where, say, $\lambda\ge0$, then $\mathbf u\in C^{1,1/2}(B_{1/2}^+)$. Moreover, the free boundary, given by $\Gamma_\mathbf u=\partial\{x;\,u^3(x)=0,\,x_3=0\}\cap B_1$, will be a $C^{1,\alpha}$-graph close to points where $\mathbf u$ is nondegenerate. Historically, the problem is of some interest in that it is the first formulation of a variational inequality. A detailed version of this paper will appear in the near future.
Keywords: free boundary regularity, Signorini problem, optimal regularity, system of equations.
@article{AA_2012_24_3_a0,
     author = {John Andersson},
     title = {Optimal regularity and free boundary regularity for the {Signorini} problem},
     journal = {Algebra i analiz},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_3_a0/}
}
TY  - JOUR
AU  - John Andersson
TI  - Optimal regularity and free boundary regularity for the Signorini problem
JO  - Algebra i analiz
PY  - 2012
SP  - 1
EP  - 21
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_3_a0/
LA  - en
ID  - AA_2012_24_3_a0
ER  - 
%0 Journal Article
%A John Andersson
%T Optimal regularity and free boundary regularity for the Signorini problem
%J Algebra i analiz
%D 2012
%P 1-21
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_3_a0/
%G en
%F AA_2012_24_3_a0
John Andersson. Optimal regularity and free boundary regularity for the Signorini problem. Algebra i analiz, Tome 24 (2012) no. 3, pp. 1-21. http://geodesic.mathdoc.fr/item/AA_2012_24_3_a0/

[1] Andersson J., Shahgholian H., Weiss G. S., “On the singularities of a free boundary through Fourier series expansion”, Invent. Math. (to appear)

[2] Apushkinskaya D. E., Shakhgolyan Kh., Uraltseva N. N., “Granichnye otsenki reshenii parabolicheskoi zadachi so svobodnoi granitsei”, Zap. nauch. semin. POMI, 271, 2000, 39–55 | MR | Zbl

[3] Arkhipova A. A., Uraltseva N. N., “Regulyarnost reshenii diagonalnykh ellipticheskikh sistem pri vypuklykh ogranicheniyakh na granitse oblasti”, Zap. nauch. semin. LOMI, 152, 1986, 5–17 | MR | Zbl

[4] Athanasopoulos I., Caffarelli L. A., “Optimal regularity of lower dimensional obstacle problems”, Zap. nauch. semin. POMI, 310, 2004, 49–66 | MR | Zbl

[5] Athanasopoulos I., Caffarelli L. A., Salsa S., “The structure of the free boundary for lower dimensional obstacle problems”, Amer. J. Math., 130:2 (2008), 485–498 | DOI | MR | Zbl

[6] Athanasopoulos Ioannis, Caffarelli Luis A., “A theorem of real analysis and its application to free boundary problems”, Comm. Pure Appl. Math., 38:5 (1985), 499–502 | DOI | MR

[7] Benedicks Michael, “Positive harmonic functions vanishing on the boundary of certain domains in $\mathbf R^n$”, Ark. Mat., 18:1 (1980), 53–72 | DOI | MR | Zbl

[8] Brézis Haïm, Kinderlehrer David, “The smoothness of solutions to nonlinear variational inequalities”, Indiana Univ. Math. J., 23 (1973/74), 831–844 | DOI | MR

[9] Caffarelli L., Kohn R., Nirenberg L., “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35:6 (1982), 771–831 | DOI | MR | Zbl

[10] Caffarelli Luis A., “The regularity of free boundaries in higher dimensions”, Acta Math., 139:3–4 (1977), 155–184 | DOI | MR

[11] Caffarelli Luis A., “Compactness methods in free boundary problems”, Comm. Partial Differential Equations, 5:4 (1980), 427–448 | DOI | MR | Zbl

[12] Caffarelli Luis A., “A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are $C^{1,\alpha}$”, Rev. Mat. Iberoamericana, 3:2 (1987), 139–162 | DOI | MR | Zbl

[13] Caffarelli Luis A., “A Harnack inequality approach to the regularity of free boundaries. III. Existence theory, compactness, and dependence on $X$”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15:4 (1988), 583–602 (1989) | MR | Zbl

[14] Caffarelli Luis A., “A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz”, Comm. Pure Appl. Math., 42:1 (1989), 55–78 | DOI | MR | Zbl

[15] Evans Lawrence C., “Quasiconvexity and partial regularity in the calculus of variations”, Arch. Rational Mech. Anal., 95:3 (1986), 227–252 | DOI | MR | Zbl

[16] Fichera Gaetano, “Sul problema elastostatico di Signorini con ambigue condizioni al contorno”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 34 (1963), 138–142 | MR | Zbl

[17] Friedland S., Hayman W. K., “Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions”, Comment. Math. Helv., 51:2 (1976), 133–161 | DOI | MR | Zbl

[18] Fuchs Martin, “The smoothness of the free boundary for a class of vector-valued problems”, Comm. Partial Differential Equations, 14:8–9 (1989), 1027–1041 | DOI | MR | Zbl

[19] Giusti Enrico, Direct methods in the calculus of variations, World Sci. Publ. Co., Inc., River Edge, NJ, 2003, viii+403 pp. | MR | Zbl

[20] Kinderlehrer David, “Remarks about Signorini's problem in linear elasticity”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8:4 (1981), 605–645 | MR | Zbl

[21] Lewy Hans, Stampacchia Guido, “On the regularity of the solution of a variational inequality”, Comm. Pure Appl. Math., 22 (1969), 153–188 | DOI | MR | Zbl

[22] Lions J.-L., Stampacchia G., “Variational inequalities”, Comm. Pure Appl. Math., 20 (1967), 493–519 | DOI | MR | Zbl

[23] Schumann Rainer, “Regularity for Signorini's problem in linear elasticity”, Manuscripta Math., 63:3 (1989), 255–291 | DOI | MR | Zbl

[24] Shahgholian Henrik, Uraltseva Nina, “Regularity properties of a free boundary near contact points with the fixed boundary”, Duke Math. J., 116:1 (2003), 1–34 | DOI | MR | Zbl

[25] Signorini A., “Sopra alcune questioni di elastostatica”, Soc. Italiana per il Progr. delle Sci., 1933, 143–148 | Zbl