Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2012_24_1_a5, author = {A. Yu. Solynin}, title = {Continuous symmetrization via polarization}, journal = {Algebra i analiz}, pages = {157--222}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2012_24_1_a5/} }
A. Yu. Solynin. Continuous symmetrization via polarization. Algebra i analiz, Tome 24 (2012) no. 1, pp. 157-222. http://geodesic.mathdoc.fr/item/AA_2012_24_1_a5/
[1] Abramovich S., “Monotonicity of eigenvalues under symmetrization”, SIAM J. Appl. Math., 28 (1975), 350–361 | DOI | MR | Zbl
[2] Ahlfors L. V., Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co, New York etc., 1973 | MR | Zbl
[3] Alt H. W., Lineare Funktionalanalysis, 2nd ed., Springer-Verlag, 1992
[4] Alvino A., Lions P.-L., Trombetti G., “Comparison results for elliptic and parabolic equations via symmetrization: a new approach”, Differential Integral Equations, 4 (1991), 25–50 | MR | Zbl
[5] Alvino A., Lions P.-L., Trombetti G., “Comparison results for elliptic and parabolic equations via Schwarz symmetrization”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7:2 (1990), 37–65 | MR | Zbl
[6] Baernstein A., II, “A unified approach to symmetrization”, Partial Differential Equations of Elliptic Type (Cortona, 1992), Sympos. Math., 35, Cambridge Univ. Press, Cambridge, 1994, 47–91 | MR | Zbl
[7] Baernstein A., II, Taylor B. A., “Spherical rearrangements, subharmonic functions, and $*$-functions in $n$-space”, Duke Math. J., 43 (1976), 245–268 | DOI | MR | Zbl
[8] Beckner W., “Sobolev inequalities, the Poisson semigroup, and analysis on the sphere $S^n$”, Proc. Nat. Acad. Sci. U.S.A., 89 (1992), 4816–4819 | DOI | MR | Zbl
[9] Betsakos D., “Polarization, conformal invariants, and Brownian motion”, Ann. Acad. Sci. Fenn. Math., 23:1 (1998), 59–82 | MR | Zbl
[10] Betsakos D., “Polarization, continuous Markov processes, and second order elliptic equations”, Indiana Univ. Math. J., 53:2 (2004), 331–345 | DOI | MR | Zbl
[11] Blaschke W., Kreis und Kugel, Chelsea Publ. Co., New York, 1949 | MR | Zbl
[12] Brock F., “Continuous Steiner-symmetrization”, Math. Nachr., 172 (1995), 25–48 | DOI | MR | Zbl
[13] Brock F., “Continuous rearrangement and symmetry of solutions of elliptic problems”, Proc. Indian Acad. Sci. Math. Sci., 110:2 (2000), 157–204 | DOI | MR | Zbl
[14] Brock F., Solynin A. Yu., “An approach to symmetrization via polarization”, Trans. Amer. Math. Soc., 352:4 (2000), 1759–1796 | DOI | MR | Zbl
[15] Dubinin V. N., “Preobrazovanie funktsii i printsip Dirikhle”, Mat. zametki, 38:1 (1985), 49–55 | MR | Zbl
[16] Dubinin V. N., “Capacities and geometric transformations of subsets in $n$-space”, Geom. Funct. Anal., 3 (1993), 342–369 | DOI | MR | Zbl
[17] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 49:1 (1994), 3–76 | MR | Zbl
[18] Gidas B., Ni W. M., Nirenberg L., “Symmetry and related properties via the maximum principle”, Comm. Math. Phys., 68 (1979), 209–243 | DOI | MR | Zbl
[19] Kačur J., Method of Rothe in evolution equations, Teubner Texts in Math., 80, Teubner-Verlag, Leipzig, 1985 | MR
[20] Kawohl B., Rearrangements and convexity of level sets in PDE, Lecture Notes in Math., 1150, Springer-Verlag, Berlin, 1985 | MR | Zbl
[21] Levitskii B. E., “$k$-simmetrizatsiya i ekstremalnye koltsa”, Mat. analiz, Nauch. tr., 148, Kuban. gos. un-t, Krasnodar, 1971, 35–40
[22] McNabb A., “Partial Steiner symmetrization and some conduction problems”, J. Math. Anal. Appl., 17 (1967), 221–227 | DOI | MR | Zbl
[23] Marcus M., “Radial averaging of domains, estimates for Dirichlet integrals and applications”, J. Analyse Math., 27 (1974), 47–78 | DOI | MR | Zbl
[24] Pólya G., Szegö G., Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, NJ, 1951 | MR | Zbl
[25] Sarvas J., Symmetrization of condensers in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I, 522, 1972, 44 pp. | MR | Zbl
[26] Serrin J., “A symmetry problem in potential theory”, Arch. Rational Mech. Anal., 43 (1971), 304–318 | DOI | MR | Zbl
[27] Solynin A. Yu., “Nepreryvnaya simmetrizatsiya mnozhestv”, Zap. nauch. semin. LOMI, 185, 1990, 125–139 | MR | Zbl
[28] Solynin A. Yu., “Polyarizatsiya i funktsionalnye neravenstva”, Algebra i analiz, 8:6 (1996), 148–185 | MR | Zbl
[29] Solynin A. Yu., “Uporyadochivanie mnozhestv, giperbolicheskaya metrika i garmonicheskaya mera”, Zap. nauch. semin. POMI, 237, 1997, 129–147 | MR | Zbl
[30] Steiner J., Gesammelte Werke, v. 2, Reimer-Verlag, Berlin, 1882
[31] Serrin J., “A symmetry problem in potential theory”, Arch. Rational Mech. Anal., 43 (1971), 304–318 | DOI | MR | Zbl
[32] Talenti G., “The standard isoperimetric theorem”, Handbook of Convex Geometry, v. A, North-Holland, Amsterdam, 1993, 73–123 | MR | Zbl
[33] Wolontis V., “Properties of conformal invariants”, Amer. J. Math., 74 (1952), 587–606 | DOI | MR | Zbl