Continuous symmetrization via polarization
Algebra i analiz, Tome 24 (2012) no. 1, pp. 157-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a one-parameter family of transformations that changes sets and functions continuously into their $(k,n)$-Steiner symmetrizations. Our construction consists of two stages. First, we employ a continuous symmetrization introduced by the author in 1990 to transform sets and functions into their one-dimensional Steiner symmetrization. Some of our proofs at this stage rely on a simple rearrangement called polarization. At the second stage, we use an approximation theorem due to Blaschke and Sarvas to give an inductive definition of the continuous $(k,n)$-Steiner symmetrization for any $2\le k\le n$. This transformation provides us with the desired continuous path along which all basic characteristics of sets and functions vary monotonically. In its turn, this leads to continuous versions of several convolution type inequalities and Dirichlet's type inequalities as well as to continuous versions of comparison theorems for solutions of some elliptic and parabolic partial differential equations.
Keywords: continuous symmetrization, Steiner symmetrization, rearrangement, polarization, integral inequality, boundary-value problem, comparison theorem.
@article{AA_2012_24_1_a5,
     author = {A. Yu. Solynin},
     title = {Continuous symmetrization via polarization},
     journal = {Algebra i analiz},
     pages = {157--222},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2012_24_1_a5/}
}
TY  - JOUR
AU  - A. Yu. Solynin
TI  - Continuous symmetrization via polarization
JO  - Algebra i analiz
PY  - 2012
SP  - 157
EP  - 222
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2012_24_1_a5/
LA  - en
ID  - AA_2012_24_1_a5
ER  - 
%0 Journal Article
%A A. Yu. Solynin
%T Continuous symmetrization via polarization
%J Algebra i analiz
%D 2012
%P 157-222
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2012_24_1_a5/
%G en
%F AA_2012_24_1_a5
A. Yu. Solynin. Continuous symmetrization via polarization. Algebra i analiz, Tome 24 (2012) no. 1, pp. 157-222. http://geodesic.mathdoc.fr/item/AA_2012_24_1_a5/

[1] Abramovich S., “Monotonicity of eigenvalues under symmetrization”, SIAM J. Appl. Math., 28 (1975), 350–361 | DOI | MR | Zbl

[2] Ahlfors L. V., Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co, New York etc., 1973 | MR | Zbl

[3] Alt H. W., Lineare Funktionalanalysis, 2nd ed., Springer-Verlag, 1992

[4] Alvino A., Lions P.-L., Trombetti G., “Comparison results for elliptic and parabolic equations via symmetrization: a new approach”, Differential Integral Equations, 4 (1991), 25–50 | MR | Zbl

[5] Alvino A., Lions P.-L., Trombetti G., “Comparison results for elliptic and parabolic equations via Schwarz symmetrization”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7:2 (1990), 37–65 | MR | Zbl

[6] Baernstein A., II, “A unified approach to symmetrization”, Partial Differential Equations of Elliptic Type (Cortona, 1992), Sympos. Math., 35, Cambridge Univ. Press, Cambridge, 1994, 47–91 | MR | Zbl

[7] Baernstein A., II, Taylor B. A., “Spherical rearrangements, subharmonic functions, and $*$-functions in $n$-space”, Duke Math. J., 43 (1976), 245–268 | DOI | MR | Zbl

[8] Beckner W., “Sobolev inequalities, the Poisson semigroup, and analysis on the sphere $S^n$”, Proc. Nat. Acad. Sci. U.S.A., 89 (1992), 4816–4819 | DOI | MR | Zbl

[9] Betsakos D., “Polarization, conformal invariants, and Brownian motion”, Ann. Acad. Sci. Fenn. Math., 23:1 (1998), 59–82 | MR | Zbl

[10] Betsakos D., “Polarization, continuous Markov processes, and second order elliptic equations”, Indiana Univ. Math. J., 53:2 (2004), 331–345 | DOI | MR | Zbl

[11] Blaschke W., Kreis und Kugel, Chelsea Publ. Co., New York, 1949 | MR | Zbl

[12] Brock F., “Continuous Steiner-symmetrization”, Math. Nachr., 172 (1995), 25–48 | DOI | MR | Zbl

[13] Brock F., “Continuous rearrangement and symmetry of solutions of elliptic problems”, Proc. Indian Acad. Sci. Math. Sci., 110:2 (2000), 157–204 | DOI | MR | Zbl

[14] Brock F., Solynin A. Yu., “An approach to symmetrization via polarization”, Trans. Amer. Math. Soc., 352:4 (2000), 1759–1796 | DOI | MR | Zbl

[15] Dubinin V. N., “Preobrazovanie funktsii i printsip Dirikhle”, Mat. zametki, 38:1 (1985), 49–55 | MR | Zbl

[16] Dubinin V. N., “Capacities and geometric transformations of subsets in $n$-space”, Geom. Funct. Anal., 3 (1993), 342–369 | DOI | MR | Zbl

[17] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 49:1 (1994), 3–76 | MR | Zbl

[18] Gidas B., Ni W. M., Nirenberg L., “Symmetry and related properties via the maximum principle”, Comm. Math. Phys., 68 (1979), 209–243 | DOI | MR | Zbl

[19] Kačur J., Method of Rothe in evolution equations, Teubner Texts in Math., 80, Teubner-Verlag, Leipzig, 1985 | MR

[20] Kawohl B., Rearrangements and convexity of level sets in PDE, Lecture Notes in Math., 1150, Springer-Verlag, Berlin, 1985 | MR | Zbl

[21] Levitskii B. E., “$k$-simmetrizatsiya i ekstremalnye koltsa”, Mat. analiz, Nauch. tr., 148, Kuban. gos. un-t, Krasnodar, 1971, 35–40

[22] McNabb A., “Partial Steiner symmetrization and some conduction problems”, J. Math. Anal. Appl., 17 (1967), 221–227 | DOI | MR | Zbl

[23] Marcus M., “Radial averaging of domains, estimates for Dirichlet integrals and applications”, J. Analyse Math., 27 (1974), 47–78 | DOI | MR | Zbl

[24] Pólya G., Szegö G., Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, NJ, 1951 | MR | Zbl

[25] Sarvas J., Symmetrization of condensers in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I, 522, 1972, 44 pp. | MR | Zbl

[26] Serrin J., “A symmetry problem in potential theory”, Arch. Rational Mech. Anal., 43 (1971), 304–318 | DOI | MR | Zbl

[27] Solynin A. Yu., “Nepreryvnaya simmetrizatsiya mnozhestv”, Zap. nauch. semin. LOMI, 185, 1990, 125–139 | MR | Zbl

[28] Solynin A. Yu., “Polyarizatsiya i funktsionalnye neravenstva”, Algebra i analiz, 8:6 (1996), 148–185 | MR | Zbl

[29] Solynin A. Yu., “Uporyadochivanie mnozhestv, giperbolicheskaya metrika i garmonicheskaya mera”, Zap. nauch. semin. POMI, 237, 1997, 129–147 | MR | Zbl

[30] Steiner J., Gesammelte Werke, v. 2, Reimer-Verlag, Berlin, 1882

[31] Serrin J., “A symmetry problem in potential theory”, Arch. Rational Mech. Anal., 43 (1971), 304–318 | DOI | MR | Zbl

[32] Talenti G., “The standard isoperimetric theorem”, Handbook of Convex Geometry, v. A, North-Holland, Amsterdam, 1993, 73–123 | MR | Zbl

[33] Wolontis V., “Properties of conformal invariants”, Amer. J. Math., 74 (1952), 587–606 | DOI | MR | Zbl