Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2011_23_6_a1, author = {M. N. Demchenko}, title = {The dynamical 3-dimensional inverse problem for the {Maxwell} system}, journal = {Algebra i analiz}, pages = {32--79}, publisher = {mathdoc}, volume = {23}, number = {6}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2011_23_6_a1/} }
M. N. Demchenko. The dynamical 3-dimensional inverse problem for the Maxwell system. Algebra i analiz, Tome 23 (2011) no. 6, pp. 32-79. http://geodesic.mathdoc.fr/item/AA_2011_23_6_a1/
[1] Belishev M. I., Isakov V. M., Pestov L. N., Sharafutdinov V. A., “K rekonstruktsii metriki po vneshnim elektromagnitnym izmereniyam”, Dokl. RAN, 372:3 (2000), 298–300 | MR | Zbl
[2] Belishev M. I., Glasman A. K., “Dinamicheskaya obratnaya zadacha dlya sistemy Maksvella: vosstanovlenie skorosti v regulyarnoi zone (BC-metod)”, Algebra i analiz, 12:2 (2000), 131–187 | MR | Zbl
[3] Belishev M. I., Blagoveschenskii A. S., Dinamicheskie obratnye zadachi teorii voln, SPbGU, SPb., 1999
[4] Belishev M. I., “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl
[5] Belishev M. I., Isakov V. M., “K edinstvennosti vosstanovleniya parametrov sistemy Maksvella po dinamicheskim granichnym dannym”, Zap. nauch. semin. POMI, 285, 2002, 15–32 | MR | Zbl
[6] Ola P., Päivärinta L., Somersalo E., “An inverse boundary value problem in electrodynamics”, Duke Math. J., 70 (1993), 617–653 | DOI | MR | Zbl
[7] Kurylev Y., Lassas M., Somersalo E., “Maxwell's equations with a polarization independent wave velocity: direct and inverse problems”, J. Math. Pures Appl. (9), 86:3 (2006), 237–270 | MR | Zbl
[8] Demchenko M. N., “O chastichno izometricheskom preobrazovanii solenoidalnykh vektornykh polei”, Zap. nauch. semin. POMI, 370, 2009, 22–43
[9] Leis R., Initial-boundary value problems in mathematical physics, B. G. Teubner, Stuttgart, 1986 | MR | Zbl
[10] Eller M., “Symmetric hyperbolic systems with boundary conditions that do not satisfy the Kreiss–Sakamoto condition”, Appl. Math. (Warsaw), 35 (2008), 323–333 | DOI | MR | Zbl
[11] Eller M., Isakov V., Nakamura G., Tataru D., “Uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems”, Nonlinear Partial Differential Equations and their Applications, Collége de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl., 31, North-Holland, Amsterdam, 2002, 329–349 | MR
[12] Sohr H., The Navier–Stokes equations. An elementary functional analytic approach, Birkhäuser Verlag, Basel, 2001 | MR | Zbl
[13] Belishev M. I., “Ob unitarnom preobrazovanii v prostranstve $L_2(\Omega;\mathbb R^3)$, svyazannom s razlozheniem Veilya”, Zap. nauch. semin. POMI, 275, 2001, 25–40 | MR | Zbl
[14] Burago Yu. D., Zalgaller V. A., Vvedenie v rimanovu geometriyu, Nauka, SPb., 1994 | MR | Zbl
[15] Birman M. Sh., Solomyak M. Z., “$L_2$-teoriya operatora Maksvella v proizvolnykh oblastyakh”, Uspekhi mat. nauk, 42:6 (1987), 61–76 | MR | Zbl