The dynamical 3-dimensional inverse problem for the Maxwell system
Algebra i analiz, Tome 23 (2011) no. 6, pp. 32-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2011_23_6_a1,
     author = {M. N. Demchenko},
     title = {The dynamical 3-dimensional inverse problem for the {Maxwell} system},
     journal = {Algebra i analiz},
     pages = {32--79},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2011_23_6_a1/}
}
TY  - JOUR
AU  - M. N. Demchenko
TI  - The dynamical 3-dimensional inverse problem for the Maxwell system
JO  - Algebra i analiz
PY  - 2011
SP  - 32
EP  - 79
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2011_23_6_a1/
LA  - ru
ID  - AA_2011_23_6_a1
ER  - 
%0 Journal Article
%A M. N. Demchenko
%T The dynamical 3-dimensional inverse problem for the Maxwell system
%J Algebra i analiz
%D 2011
%P 32-79
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2011_23_6_a1/
%G ru
%F AA_2011_23_6_a1
M. N. Demchenko. The dynamical 3-dimensional inverse problem for the Maxwell system. Algebra i analiz, Tome 23 (2011) no. 6, pp. 32-79. http://geodesic.mathdoc.fr/item/AA_2011_23_6_a1/

[1] Belishev M. I., Isakov V. M., Pestov L. N., Sharafutdinov V. A., “K rekonstruktsii metriki po vneshnim elektromagnitnym izmereniyam”, Dokl. RAN, 372:3 (2000), 298–300 | MR | Zbl

[2] Belishev M. I., Glasman A. K., “Dinamicheskaya obratnaya zadacha dlya sistemy Maksvella: vosstanovlenie skorosti v regulyarnoi zone (BC-metod)”, Algebra i analiz, 12:2 (2000), 131–187 | MR | Zbl

[3] Belishev M. I., Blagoveschenskii A. S., Dinamicheskie obratnye zadachi teorii voln, SPbGU, SPb., 1999

[4] Belishev M. I., “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl

[5] Belishev M. I., Isakov V. M., “K edinstvennosti vosstanovleniya parametrov sistemy Maksvella po dinamicheskim granichnym dannym”, Zap. nauch. semin. POMI, 285, 2002, 15–32 | MR | Zbl

[6] Ola P., Päivärinta L., Somersalo E., “An inverse boundary value problem in electrodynamics”, Duke Math. J., 70 (1993), 617–653 | DOI | MR | Zbl

[7] Kurylev Y., Lassas M., Somersalo E., “Maxwell's equations with a polarization independent wave velocity: direct and inverse problems”, J. Math. Pures Appl. (9), 86:3 (2006), 237–270 | MR | Zbl

[8] Demchenko M. N., “O chastichno izometricheskom preobrazovanii solenoidalnykh vektornykh polei”, Zap. nauch. semin. POMI, 370, 2009, 22–43

[9] Leis R., Initial-boundary value problems in mathematical physics, B. G. Teubner, Stuttgart, 1986 | MR | Zbl

[10] Eller M., “Symmetric hyperbolic systems with boundary conditions that do not satisfy the Kreiss–Sakamoto condition”, Appl. Math. (Warsaw), 35 (2008), 323–333 | DOI | MR | Zbl

[11] Eller M., Isakov V., Nakamura G., Tataru D., “Uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems”, Nonlinear Partial Differential Equations and their Applications, Collége de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl., 31, North-Holland, Amsterdam, 2002, 329–349 | MR

[12] Sohr H., The Navier–Stokes equations. An elementary functional analytic approach, Birkhäuser Verlag, Basel, 2001 | MR | Zbl

[13] Belishev M. I., “Ob unitarnom preobrazovanii v prostranstve $L_2(\Omega;\mathbb R^3)$, svyazannom s razlozheniem Veilya”, Zap. nauch. semin. POMI, 275, 2001, 25–40 | MR | Zbl

[14] Burago Yu. D., Zalgaller V. A., Vvedenie v rimanovu geometriyu, Nauka, SPb., 1994 | MR | Zbl

[15] Birman M. Sh., Solomyak M. Z., “$L_2$-teoriya operatora Maksvella v proizvolnykh oblastyakh”, Uspekhi mat. nauk, 42:6 (1987), 61–76 | MR | Zbl