Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2011_23_3_a2, author = {A. M. Vershik and M. I. Graev}, title = {Poisson model of the {Fock} space and representations of current groups}, journal = {Algebra i analiz}, pages = {63--136}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2011_23_3_a2/} }
A. M. Vershik; M. I. Graev. Poisson model of the Fock space and representations of current groups. Algebra i analiz, Tome 23 (2011) no. 3, pp. 63-136. http://geodesic.mathdoc.fr/item/AA_2011_23_3_a2/
[1] Beitmen G., Erdeii L., Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1973; т. 2, Наука, М., 1974
[2] Berezin F. A., “Predstavleniya nepreryvnogo pryamogo proizvedeniya universalnykh nakryvayuschikh gruppy dvizhenii kompleksnogo shara”, Tr. Mosk. mat. o-va, 36, 1978, 275–293 | MR | Zbl
[3] Vershik A. M., “Suschestvuet li mera Lebega v beskonechnomernom prostranstve?”, Tr. Mat. in-ta RAN, 259, 2007, 256–281 | MR | Zbl
[4] Vershik A. M., Gelfand I. M., Graev M. I., “Predstavleniya gruppy $SL(2,R)$, gde $R$ – koltso funktsii”, Uspekhi mat. nauk, 28:5 (1973), 83–128 | MR | Zbl
[5] Vershik A. M., Gelfand I. M., Graev M. I., “Neprivodimye predstavleniya gruppy $G^X $ i kogomologii”, Funkts. anal. i ego pril., 8:2 (1974), 67–69 | MR | Zbl
[6] Vershik A. M., Gelfand I. M., Graev M. I., “Predstavleniya gruppy diffeomorfizmov”, Uspekhi mat. nauk, 30:6 (1975), 3–50 | MR | Zbl
[7] Vershik A. M., Gelfand I. M., Graev M. I., “Kommutativnaya model predstavleniya gruppy tokov $SL(2,\mathbb R)^X$, svyazannaya s unipotentnoi podgruppoi”, Funkts. anal. i ego pril., 17:2 (1983), 70–72 | MR | Zbl
[8] Vershik A. M., Graev M. I., “Kommutativnaya model predstavleniya gruppy $O(n,1)^X$ i obobschennaya lebegova mera v prostranstve raspredelenii”, Funkts. anal. i ego pril., 39:2 (2005), 1–12 | MR | Zbl
[9] Vershik A. M., Graev M. I., “Struktura dopolnitelnykh serii i osobykh predstavlenii grupp $O(n,1)$ i $U(n,1)$”, Uspekhi mat. nauk, 61:5 (2006), 3–88 | MR | Zbl
[10] Vershik A. M., Graev M. I., “Integralnye modeli predstavlenii grupp tokov”, Funkts. anal. i ego pril., 42:1 (2008), 22–32 | MR | Zbl
[11] Vershik A. M., Graev M. I., “Integralnye modeli unitarnykh predstavlenii grupp tokov so znacheniyami v polupryamykh proizvedeniyakh”, Funkts. anal. i ego pril., 42:4 (2008), 37–49 | MR | Zbl
[12] Vershik A. M., Graev M. I., “Integralnye modeli predstavlenii grupp tokov prostykh grupp Li”, Uspekhi mat. nauk, 64:2 (2009), 5–72 | MR | Zbl
[13] Vershik A. M., Karpushev S. I., “Kogomologii grupp v unitarnykh predstavleniyakh, okrestnost edinitsy i uslovno polozhitelno opredelennye funktsii”, Mat. cb., 119(161):4 (1982), 521–533 | MR | Zbl
[14] Vershik A. M., Tsilevich N. V., “Fokovskie faktorizatsii i razlozheniya prostranstv $L^2$ nad obschimi protsessami Levi”, Uspekhi mat. nauk, 58:3 (2003), 3–50 | MR | Zbl
[15] Gelfand I. M., Graev M. I., “Osobye predstavleniya gruppy $SU(n,1)$ i proektivnye unitarnye predstavleniya gruppy tokov $SU(n,1)^X$”, Dokl. RAN, 332:3 (1993), 280–282 | MR
[16] Gisharde A., Kogomologii topologicheskikh grupp i algebr Li, Mir, M., 1984 | MR
[17] Kazhdan D. A., “O svyazi dualnogo prostranstva gruppy so stroeniem ee zamknutykh podgrupp”, Funkts. anal. i ego pril., 1:1 (1967), 71–74 | MR | Zbl
[18] Kingman Dzh., Puassonovskie protsessy, MTsNMO, M., 2007
[19] Kirillov A. A., Lektsii po metodu orbit, Novosibirsk, 2002
[20] Molchanov V. F., “Kanonicheskie predstavleniya i nadgruppy dlya giperboloidov”, Funkts. anal. i ego pril., 39:4 (2005), 48–61 | MR | Zbl
[21] Neretin Yu. A., Kategorii simmetrii i beskonechnomernye gruppy, Editorial URSS, M., 1998
[22] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR
[23] Khart N., Geometricheskoe kvantovanie v deistvii, Mir, M., 1985 | MR
[24] Araki H., “Factorisable representation of current algebra. Non commutative extension of the Lévy–Kinchin formula and cohomology of a solvable group with values in a Hilbert space”, Publ. Res. Inst. Math. Sci., 5 (1969–1970), 361–422 | DOI | MR
[25] Delorme P., “1-cohomologie des representations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continus de représentations”, Bull Soc. Math. France, 105 (1977), 281–336 | MR | Zbl
[26] Delorme P., “Irreductibilité de certaines représentations de $G^X$”, J. Funct. Anal., 30 (1978), 36–47 | DOI | MR | Zbl
[27] Gel'fand I. M., Graev M. I., Vershik A. M., “Representations of the group of smooth mappings of a manifold $X$ into a compact Lie group”, Compositio Math., 35 (1977), 299–334 | MR | Zbl
[28] Gel'fand I. M., Graev M. I., Vershik A. M., “Representations of the group of functions taking values in a compact Lie group”, Compositio Math., 42 (1981), 217–243 | MR
[29] Gel'fand I. M., Graev M. I., Vershik A. M., “Models of representations of current groups”, Representations of Lie Groups and Lie Algebras (Budapest, 1971), Akad. Kiadó, Budapest, 1985, 121–179 | MR
[30] Graev M. I., Vershik A. M., “The basic representation of the current group $O(n,1)^X$ in the $L^2$ space over the generalized Lebesgue measure”, Indag. Math., 16 (2005), 499–529 | DOI | MR | Zbl
[31] Guichardet A., Symmetric Hilbert spaces and related topics, Lecture Notes in Math., 261, Springer-Verlag, Berlin–New York, 1972 | MR | Zbl
[32] Ismagilov R. S., Representations of infinite-dimensional groups, Transl. Math. Monogr., 152, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[33] Parthasarathy K. R., Schmidt K., Positive definite kernels, continuous tensor products, and central limit theorems of probability theory, Lecture Notes in Math., 272, Springer-Verlag, Berlin–New York, 1972 | MR | Zbl
[34] Tsilevich N., Vershik A., Yor M., “An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process”, J. Funct. Anal., 185 (2001), 274–296 | DOI | MR | Zbl
[35] Vershik A., “Invariant measures for the continual Cartan subgroup”, J. Funct. Anal., 255 (2008), 2661–2682 | DOI | MR | Zbl
[36] Vershik A., “The behavior of the Laplace transform of the invariant measure on the hypersphere of high dimension”, J. Fixed Point Theory Appl., 3 (2008), 317–329 | DOI | MR | Zbl
[37] Vershik A., Tsirelson B., “Examples of nonlinear continuous tensor products of measure spaces and non-Fock factorizations”, Rev. Math. Phys., 10 (1998), 81–145 | DOI | MR | Zbl
[38] Wolf J. A., Unitary representations of maximal parabolic subgroups of the classical groups, Mem. Amer. Math. Soc., 8, no. 180, 1976, 193 pp. | MR