Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2011_23_1_a3, author = {A. M. Vershik}, title = {Scailing entropy and automorphisms with pure pointspectrum}, journal = {Algebra i analiz}, pages = {111--135}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2011_23_1_a3/} }
A. M. Vershik. Scailing entropy and automorphisms with pure pointspectrum. Algebra i analiz, Tome 23 (2011) no. 1, pp. 111-135. http://geodesic.mathdoc.fr/item/AA_2011_23_1_a3/
[1] Birman M. Sh., “O spektre singulyarnykh granichnykh zadach”, Mat. sb., 55(97):2 (1961), 125–174 | MR | Zbl
[2] Vershik A. M., “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, Dokl. AN SSSR, 259:3 (1981), 526–529 | MR | Zbl
[3] Vershik A. M., “Teorema o markovskoi periodicheskoi approksimatsii v ergodicheskoi teorii”, Zap. nauch. semin. LOMI, 115, 1982, 72–82 | MR | Zbl
[4] Vershik A., “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–184 | MR | Zbl
[5] Gromov M., Metric structure for Riemannian and non-Riemannian spaces, Progr. Math., 152, Birkhäuser Boston, Inc., Boston, MA, 1999 | MR | Zbl
[6] Vershik A. M., “Klassifikatsiya izmerimykh funktsii neskolkikh argumentov i invariantno raspredelennye sluchainye matritsy”, Funkts. anal. i ego pril., 36:2 (2002), 12–27 | MR | Zbl
[7] Vershik A., “Sluchainye metricheskie prostranstva i universalnost”, Uspekhi mat. nauk, 59:2 (2004), 65–104 | MR | Zbl
[8] Vershik A. M., “Informatsiya, entropiya, dinamika”, Matematika KhKh veka: Vzglyad iz Peterburga, MTsNMO, M., 2010, 47–76
[9] Cameron P., Vershik A., “Some isometry groups of the Urysohn space”, Ann. Pure Appl. Logic, 143:1–3 (2006), 70–78 | DOI | MR | Zbl
[10] Kushnirenko A. G., “O metricheskikh invariantakh tipa entropii”, Uspekhi mat. nauk, 22:5 (1967), 57–65 | MR | Zbl
[11] Vershik A., Orbit theory, locally finite permutations, and Morse arithmetics, Contemp. Math., 532, Amer. Math. Soc., Providence, RI, 2010 | Zbl
[12] Feldman J., “$r$-entropy, equipartition, and Ornstein's isomorphism theorem in $R^n$”, Israel J. Math., 36 (1980), 321–345 | DOI | MR | Zbl
[13] Ratner M., “Some invariants of Kakutani equivalence”, Israel J. Math., 38 (1981), 231–240 | DOI | MR | Zbl
[14] Russian Math. Surveys, 55:4 (2000), 667–733 | DOI | MR | Zbl
[15] Ferenczi S., “Measure-theoretic complexity of ergodic systems”, Israel J. Math., 100 (1997), 189–207 | DOI | MR | Zbl
[16] Ferenczi S., Park K., “Entropy dimensions and a class of constructive examples”, Discrete Contin. Dyn. Syst., 17 (2007), 133–141 | DOI | MR | Zbl
[17] Keith M., Chastnoe soobschenie
[18] Geometry of cuts and metrics, Springer-Verlag, Berlin, 1997 | MR | Zbl
[19] Lodkin A. A., Manaev I. E., Minabutdinov A. R., “Asimptotika masshtabirovannoi entropii avtomorfizma Paskalya”, Zap. nauch. semin. POMI, 378, 2010, 58–72 | MR
[20] Glasner E., Tsirelson B., Weiss B., “The automorphism group of the Gaussian measure cannot act pointwise”, Israel J. Math., 148 (2005), 305–329 | DOI | MR | Zbl
[21] Bailey S., Keane M., Petersen K., Salama I., “Ergodicity of the adic transformation on the Euler graph”, Math. Proc. Cambridge Philos. Soc., 141 (2006), 231–238 | DOI | MR | Zbl
[22] Petersen K., Varchenko A., “The Euler adic dynamical system and path counts in the Euler graph”, Tokyo J. Math., 33:2 (2010), 327–340 | MR
[23] Petersen K., Méla X., “Dynamical properties of the Pascal adic transformation”, Ergodic Theory Dynam. Systems, 25 (2005), 227–256 | DOI | MR | Zbl
[24] Rokhlin V. A., “Ob osnovnykh ponyatiyakh teorii mery”, Mat. cb., 25(67):1 (1949), 107–150 | MR | Zbl
[25] Rokhlin V. A., “Lektsii po entropiinoi teorii preobrazovanii s invariantnoi meroi”, Uspekhi mat. nauk, 22:5 (1967), 3–56 | MR | Zbl
[26] Janvresse É., de la Rue T., “The Pascal adic transformation is loosely Bernoulli”, Ann. Inst. H. Poincaré Probab. Statist., 40:2 (2004), 133–139 | MR | Zbl
[27] Vershik A. M., Gorbulskii A. D., “Masshtabirovannaya entropiya filtratsii $\sigma$-algebr”, Teoriya veroyatnostei i ee primeneniya, 52:3 (2007), 446–467 | MR | Zbl
[28] Weil A., L'intégration dans les groupes topologiques et ses applications, Actual. Sci. Ind., 869, Hermann, Paris, 1940 | MR | Zbl