Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_6_a9, author = {V. G. Osmolovskiǐ}, title = {A variational problem of phase transitions for a~two-phase elastic medium with zero coefficient of surface tension}, journal = {Algebra i analiz}, pages = {214--234}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_6_a9/} }
TY - JOUR AU - V. G. Osmolovskiǐ TI - A variational problem of phase transitions for a~two-phase elastic medium with zero coefficient of surface tension JO - Algebra i analiz PY - 2010 SP - 214 EP - 234 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2010_22_6_a9/ LA - ru ID - AA_2010_22_6_a9 ER -
V. G. Osmolovskiǐ. A variational problem of phase transitions for a~two-phase elastic medium with zero coefficient of surface tension. Algebra i analiz, Tome 22 (2010) no. 6, pp. 214-234. http://geodesic.mathdoc.fr/item/AA_2010_22_6_a9/
[1] Grinfeld M. A., Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990 | MR
[2] Evans L. K., Garieppi R. F., Teoriya mery i tonkie svoistva funktsii, Novosibirsk, 2002
[3] Osmolovskii V. G., “Teorema suschestvovaniya i slabaya forma uravnenii Lagranzha dlya variatsionnoi zadachi teorii fazovykh prevraschenii”, Sib. mat. zh., 35:4 (1994), 835–846 | MR | Zbl
[4] Osmolovskij V. G., “Phase transition in the mechanics of continuous media for big loading”, Math. Nachr., 177 (1996), 233–250 | DOI | MR | Zbl
[5] Evans L. K., Metody slaboi skhodimosti dlya nelineinykh uravnenii s chastnymi proizvodnymi, Tamara Rozhkovskaya, Novosibirsk, 2006
[6] Osmolovskii V. G., “Kriterii polunepreryvnosti snizu funktsionala energii dvukhfazovoi uprugoi sredy”, Probl. mat. anal., 26, Tamara Rozhkovskaya, Novosibirsk, 2003, 215–254 | MR
[7] Müller S., Microstructures, phase transitions and geometry, Preprint No 3, Max-Planck-Inst. Math. in Naturwiss., Leipzig, 1997 | MR
[8] Osmolovskii V. G., “O temperaturakh fazovykh perekhodov v variatsionnoi zadache teorii uprugosti dvukhfazovykh sred”, Probl. mat. anal., 41, Tamara Rozhkovskaya, Novosibirsk, 2009, 37–47 | MR
[9] Osmolovskii V. G., “Tochnye resheniya variatsionnoi zadachi teorii fazovykh perekhodov mekhaniki sploshnykh sred”, Probl. mat. anal., 27, Tamara Rozhkovskaya, Novosibirsk, 2004, 171–205
[10] Osmolovskii V. G., “Suschestvovanie temperatur fazovykh perekhodov dlya neodnorodnoi anizotropnoi dvukhfazovoi uprugoi sredy”, Probl. mat. anal., 31, Tamara Rozhkovskaya, Novosibirsk, 2005, 59–66 | MR