A variational problem of phase transitions for a~two-phase elastic medium with zero coefficient of surface tension
Algebra i analiz, Tome 22 (2010) no. 6, pp. 214-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

The variational problem on the equilibrium of a two-phase elastic medium is given in an extended form and is compared with the standard setting. The lower semicontinuity of the energy functional in the extended formulation is studied, and an example is constructed where no equilibrium states exist for a special class of residual strain tensors. In the case of isotropic media, a method is described for finding equilibrium states in explicit form. The notion of temperatures of phase transitions is introduced, their existence is proved, and their properties are studied.
Keywords: free surfaces, nonconvex variational problems, phase transitions in continuum mechanics.
@article{AA_2010_22_6_a9,
     author = {V. G. Osmolovskiǐ},
     title = {A variational problem of phase transitions for a~two-phase elastic medium with zero coefficient of surface tension},
     journal = {Algebra i analiz},
     pages = {214--234},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_6_a9/}
}
TY  - JOUR
AU  - V. G. Osmolovskiǐ
TI  - A variational problem of phase transitions for a~two-phase elastic medium with zero coefficient of surface tension
JO  - Algebra i analiz
PY  - 2010
SP  - 214
EP  - 234
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_6_a9/
LA  - ru
ID  - AA_2010_22_6_a9
ER  - 
%0 Journal Article
%A V. G. Osmolovskiǐ
%T A variational problem of phase transitions for a~two-phase elastic medium with zero coefficient of surface tension
%J Algebra i analiz
%D 2010
%P 214-234
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_6_a9/
%G ru
%F AA_2010_22_6_a9
V. G. Osmolovskiǐ. A variational problem of phase transitions for a~two-phase elastic medium with zero coefficient of surface tension. Algebra i analiz, Tome 22 (2010) no. 6, pp. 214-234. http://geodesic.mathdoc.fr/item/AA_2010_22_6_a9/

[1] Grinfeld M. A., Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990 | MR

[2] Evans L. K., Garieppi R. F., Teoriya mery i tonkie svoistva funktsii, Novosibirsk, 2002

[3] Osmolovskii V. G., “Teorema suschestvovaniya i slabaya forma uravnenii Lagranzha dlya variatsionnoi zadachi teorii fazovykh prevraschenii”, Sib. mat. zh., 35:4 (1994), 835–846 | MR | Zbl

[4] Osmolovskij V. G., “Phase transition in the mechanics of continuous media for big loading”, Math. Nachr., 177 (1996), 233–250 | DOI | MR | Zbl

[5] Evans L. K., Metody slaboi skhodimosti dlya nelineinykh uravnenii s chastnymi proizvodnymi, Tamara Rozhkovskaya, Novosibirsk, 2006

[6] Osmolovskii V. G., “Kriterii polunepreryvnosti snizu funktsionala energii dvukhfazovoi uprugoi sredy”, Probl. mat. anal., 26, Tamara Rozhkovskaya, Novosibirsk, 2003, 215–254 | MR

[7] Müller S., Microstructures, phase transitions and geometry, Preprint No 3, Max-Planck-Inst. Math. in Naturwiss., Leipzig, 1997 | MR

[8] Osmolovskii V. G., “O temperaturakh fazovykh perekhodov v variatsionnoi zadache teorii uprugosti dvukhfazovykh sred”, Probl. mat. anal., 41, Tamara Rozhkovskaya, Novosibirsk, 2009, 37–47 | MR

[9] Osmolovskii V. G., “Tochnye resheniya variatsionnoi zadachi teorii fazovykh perekhodov mekhaniki sploshnykh sred”, Probl. mat. anal., 27, Tamara Rozhkovskaya, Novosibirsk, 2004, 171–205

[10] Osmolovskii V. G., “Suschestvovanie temperatur fazovykh perekhodov dlya neodnorodnoi anizotropnoi dvukhfazovoi uprugoi sredy”, Probl. mat. anal., 31, Tamara Rozhkovskaya, Novosibirsk, 2005, 59–66 | MR