Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_6_a7, author = {N. Kuznetsov}, title = {On the problem of time-harmonic water waves in the presence of a~freely-floating structure}, journal = {Algebra i analiz}, pages = {185--199}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_6_a7/} }
N. Kuznetsov. On the problem of time-harmonic water waves in the presence of a~freely-floating structure. Algebra i analiz, Tome 22 (2010) no. 6, pp. 185-199. http://geodesic.mathdoc.fr/item/AA_2010_22_6_a7/
[1] John F., “On the motion of floating bodies, I”, Comm. Pure Appl. Math., 2 (1949), 13–57 | DOI | MR | Zbl
[2] Beale J. T., “Eigenfunction expansions for objects floating in an open sea”, Comm. Pure Appl. Math., 30 (1977), 283–313 | DOI | MR | Zbl
[3] John F., “On the motion of floating bodies, II”, Comm. Pure Appl. Math., 3 (1950), 45–101 | DOI | MR
[4] McIver P., McIver M., “Trapped modes in the water-wave problem for a freely floating structure”, J. Fluid Mech., 558 (2006), 53–67 | DOI | MR | Zbl
[5] Fitzgerald C. J., McIver P., “Passive trapped modes in the water wave problem for a floating structure”, J. Fluid Mech., 657 (2010), 456–477 | DOI | Zbl
[6] Kuznetsov N., Maz'ya V., Vainberg B., Linear water waves. A mathematical approach, Cambridge Univ. Press, Cambridge, 2002 | MR
[7] McIver M., “An example of non-uniqueness in the two-dimensional linear water-wave problem”, J. Fluid Mech., 315 (1996), 257–266 | DOI | MR | Zbl
[8] Motygin O., Kuznetsov N., “Non-uniqueness in the water-wave problem: an example violating the inside John condition”, Proceedings of the 13th International Workshop on Water Waves and Floating Bodies, Delft Univ. Technology, 1998, 107–110
[9] Euler L., “Principia motus fluidorum”, Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae, VI, 1761, 271–311
[10] Fox D. W., Kuttler J. R., “Sloshing frequencies”, Z. Angew. Math. Phys., 34 (1983), 668–696 | DOI | MR | Zbl
[11] Nazarov S. A., Taskinen Ya., “O spektre zadachi Steklova v oblasti s pikom”, Vestn. S.-Peterburg. un-ta. Ser. 1, 2008, no. 1, 56–65 | Zbl
[12] Appell P. É., Traité de mécanique rationelle, v. 3, Gauthier-Villars, Paris, 1932 | Zbl