Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_6_a6, author = {V. A. Kozlov and S. A. Nazarov}, title = {The spectrum asymptotics for the {Dirichlet} problem in the case of the biharmonic operator in a~domain with highly indented boundary}, journal = {Algebra i analiz}, pages = {127--184}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_6_a6/} }
TY - JOUR AU - V. A. Kozlov AU - S. A. Nazarov TI - The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a~domain with highly indented boundary JO - Algebra i analiz PY - 2010 SP - 127 EP - 184 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2010_22_6_a6/ LA - ru ID - AA_2010_22_6_a6 ER -
%0 Journal Article %A V. A. Kozlov %A S. A. Nazarov %T The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a~domain with highly indented boundary %J Algebra i analiz %D 2010 %P 127-184 %V 22 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2010_22_6_a6/ %G ru %F AA_2010_22_6_a6
V. A. Kozlov; S. A. Nazarov. The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a~domain with highly indented boundary. Algebra i analiz, Tome 22 (2010) no. 6, pp. 127-184. http://geodesic.mathdoc.fr/item/AA_2010_22_6_a6/
[1] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[2] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR
[3] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl
[4] Nazarov S. A., Asimptoticheskii analiz tonkikh plastin i sterzhnei, v. 1, Ponizhenie razmernosti i integralnye otsenki, Nauch. kn., Novosibirsk, 2002 | Zbl
[5] Hadamard J., “Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées”, ØE uvres. de Jacques Hadamard, v. 2, Centre Nat. Rech. Sci., Paris, 1968, 515–631
[6] Mosco U., “Convergence of convex sets and of solutions of variational inequalities”, Adv. Math., 3 (1969), 510–585 | DOI | MR | Zbl
[7] Kozlov V., “On the Hadamard formula for nonsmooth domains”, J. Differential Equations, 230:2 (2006), 532–555 | DOI | MR | Zbl
[8] Kozlov V., “$L^q$-perturbations of leading coefficients of elliptic operators: asymptotics of eigenvalues”, Abstr. Appl. Anal., 2006, Art. ID 26845, 15 pp. | MR
[9] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnom vozmuschenii oblasti, TGU, Tbilisi, 1981
[10] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[11] Sánchez-Palencia E., Nonhomogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980, 398 pp. | MR | Zbl
[12] Nazarov S. A., “Dvuchlennaya asimptotika reshenii spektralnykh zadach s singulyarnymi vozmuscheniyami”, Mat. sb., 181:3 (1990), 291–320 | MR | Zbl
[13] Achdou Y., Pironneau O., “Domain decomposition and wall laws”, C. R. Acad. Sci. Paris. Sér. I, 320 (1995), 541–547 | MR | Zbl
[14] Mohammadi B., Pironneau O., Valentin F., “Rough boundaries and wall laws”, Internat. J. Numer. Methods Fluids, 27:1–4, Special Issue (1998), 169–177 | 3.0.CO;2-4 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[15] Amirat Y., Chechkin G. A., Gadyl'shin R. R., “Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary”, Zh. vychisl. mat. i mat. fiz., 46:1 (2006), 102–115 | MR | Zbl
[16] Jäger W., Mikelić A., “On the roughness-induced effective boundary conditions for an incompressible viscous flow”, J. Differential Equations, 170 (2001), 96–122 | DOI | MR | Zbl
[17] Neuss N., Neuss-Radu M., Mikelić A., “Effective laws for the Poisson equation on domains with curved oscillating boundaries”, Appl. Anal., 85:5 (2006), 479–502 | DOI | MR | Zbl
[18] Bresch D., Gérard-Varet D., “Roughness-induced effects on the quasi-geostrophic model”, Comm. Math. Phys., 253:1 (2005), 81–119 | DOI | MR | Zbl
[19] Sánchez-Palencia E., Suquet P., “Friction and homogenization of a boundary”, Free Boundary Problems: Theory and Applications (Montecatini, 1981), v. I, II, Res. Notes in Math., 78, eds. A. Fasano, M. Primicerio, Pitman, Boston, MA, 1983, 561–571 | MR
[20] Nazarov S. A., “Asimptotika reshenii i modelirovanie zadach teorii uprugosti v oblasti s bystroostsilliruyuschei granitsei”, Izv. RAN. Ser. mat., 72:3 (2008), 103–158 | MR | Zbl
[21] Nazarov S. A., “Sobstvennye kolebaniya uprugogo tela s sherokhovatoi poverkhnostyu”, Prikl. mekh. i tekhn. fiz., 48:6 (2007), 103–114 | MR
[22] Mel'nyk T. A., Nazarov S. A., “Asymptotic structure of the spectrum of the Neumann problem in a thin comb-like domain”, C. R. Acad. Sci. Paris Sér. I, 319:12 (1994), 1343–1348 | MR
[23] Melnik T. A., Nazarov S. A., “Asimptotika resheniya spektralnoi zadachi Neimana v oblasti tipa ‘gustogo grebeshka’ ”, Tr. semin. im. I. G. Petrovskogo, 19, 1996, 138–173 | MR
[24] Blanchard D., Gaudiello A., Mel'nyk T. A., “Boundary homogenization and reduction of dimension in a Kirchhoff–Love plate”, SIAM J. Math. Anal., 39:6 (2008), 1764–1787 | DOI | MR | Zbl
[25] Gaudiello A., Zappale E., “Junction in a thin multidomain for a fourth order problem”, Math. Models Methods Appl. Sci., 16:12 (2006), 1887–1918 | DOI | MR | Zbl
[26] Nazarov S. A., “Asimptotika resheniya zadachi Dirikhle dlya uravneniya s bystro ostsilliruyuschimi koeffitsientami v pryamougolnike”, Mat. sb., 182:5 (1991), 692–722 | MR | Zbl
[27] Nazarov S. A., Olyushin M. V., “O vozmuscheniyakh sobstvennykh znachenii zadachi Neimana vsledstvie variatsii granitsy oblasti”, Algebra i analiz, 5:2 (1993), 169–188 | MR | Zbl
[28] Blanc F., Nazarov S. A., “Asymptotics of solutions to the Poisson problem in a perforated domain with corners”, J. Math. Pures Appl. (9), 76:10 (1997), 893–911 | MR | Zbl
[29] Caloz G., Costabel M., Dauge M., Vial G., “Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer”, Asymptot. Anal., 50:1–2 (2006), 121–173 | MR | Zbl
[30] Nazarov S. A., “Asimptotika resheniya i modelirovanie zadachi Dirikhle v uglovoi oblasti s bystroostsilliruyuschei granitsei”, Algebra i analiz, 19:2 (2007), 183–225 | MR | Zbl
[31] Nazarov S. A., “Asimptotika resheniya zadachi Dirikhle v uglovoi oblasti s periodicheski izmenyayuscheisya granitsei”, Mat. zametki, 49:5 (1991), 86–96 | MR | Zbl
[32] Nazarov S. A., “Zadacha Neimana v uglovykh oblastyakh s periodicheskimi i parabolicheskimi vozmuscheniyami granitsy”, Tr. Mosk. mat. o-va, 69, 2007, 183–243
[33] Bucur D., Buttazzo G., Variational methods in shape optimization problems, Progr. Nonlinear Differential Equations Appl., 65, Birkhäuser Boston, Inc., Boston, MA, 2005 | MR | Zbl
[34] Henrot A., Extremum problems for eigenvalues of elliptic operators, Frontiers in Math., Birkhäuser Verlag, Basel, 2006 | MR | Zbl
[35] Sokolowski J., Zolésio J.-P., Introduction to shape optimization. Shape sensitivity analysis, Springer Ser. Comput. Math., 16, Springer-Verlag, Berlin, 1992 | MR | Zbl
[36] Delfour M. C., Zolésio J.-P., Shapes and geometries. Analysis, differential calculus, and optimization, Adv. in Design and Control, 4, SIAM, Philadelphia, PA, 2001 | MR | Zbl
[37] Kawohl B., “Some nonconvex shape optimization problems”, Optimal Shape Design (Tróia, 1998), Lecture Notes in Math., 1740, Springer, Berlin, 2000, 7–46 | MR | Zbl
[38] Nadirashvili N. S., “Rayleigh's conjecture on the principal frequency of the clamped plate”, Arch. Rational Mech. Anal., 129:1 (1995), 1–10 | DOI | MR | Zbl
[39] Ashbaugh M. S., Benguria R. D., “On Rayleigh's conjecture for the clamped plate and its generalization to three dimensions”, Duke Math. J., 78:1 (1995), 1–17 | DOI | MR | Zbl
[40] Birman M. Sh., “Variatsionnye metody resheniya kraevykh zadach, analogichnye metodu Trefttsa”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1956, no. 3, 69–89 | MR | Zbl
[41] Babushka I., “Ustoichivost oblastei opredeleniya po otnosheniyu k osnovnym zadacham teorii differentsialnykh uravnenii v chastnykh proizvodnykh, glavnym obrazom v svyazi s teoriei uprugosti, I”, Chekhosl. mat. zh., 11 (1961), 76–105; “II”, 165–203
[42] Mazya V. G., Nazarov S. A., “Paradoksy predelnogo perekhoda v resheniyakh kraevykh zadach pri approksimatsii gladkikh oblastei mnogougolnymi”, Izv. AN SSSR. Ser. mat., 50:6 (1986), 1156–1177 | MR | Zbl
[43] Babushka I., Pitkäranta J., “The plate paradox for hard and soft simple support”, SIAM J. Math. Anal., 21:3 (1990), 551–576 | DOI | MR
[44] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi mat. nauk, 54:5 (1999), 77–142 | MR | Zbl
[45] Agmon S., Nirenberg L., “Properties of solutions of ordinary differential equations in Banach space”, Comm. Pure Appl. Math., 16 (1963), 121–239 | DOI | MR | Zbl
[46] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. o-va, 16, 1967, 219–292
[47] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI
[48] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Gëldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI
[49] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[50] Kozlov V. A., Maz'ya V. G., Rossmann J., Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[51] Williams M. L., “Stress singularities resulting from various boundary conditions in angular corners of plate”, J. Appl. Mech., 4:4 (1952), 526–528
[52] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | MR | Zbl
[53] Nazarov S. A., Romashev Yu. A., “Izmenenie koeffitsienta intensivnosti pri razrushenii peremychki mezhdu kollinearnymi treschinami”, Izv. AN ArmSSR. Mekh., 35:4 (1982), 30–40 | Zbl
[54] Nazarov S. A., Slutskii A. S., “Osrednenie smeshannoi kraevoi zadachi v oblasti s anizotropnoi fraktalnoi perforatsiei”, Izv. RAN. Ser. mat., 74:2 (2010), 165–194 | MR | Zbl
[55] Adolfsson V., Pipher J., “The inhomogeneous Dirichlet problem for $\Delta^2$ in Lipschitz domains”, J. Funct. Anal., 159:1 (1998), 137–190 | DOI | MR | Zbl
[56] Kozlov V. A., Maz'ya V. G., Rossmann J., Spectral problems associated with corner singularities of solutions to elliptic equations, Math. Surveys Monogr., 85, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[57] Zorin I. S., Nazarov S. A., “Kraevoi effekt pri izgibe tonkoi trekhmernoi plastiny”, Prikl. mat. i mekh., 53:4 (1989), 642–650 | MR | Zbl
[58] Nazarov S. A., “Ob effekte trekhmernosti vblizi vershiny treschiny v tonkoi plastine”, Prikl. mat. i mekh., 55:3 (1991), 500–510 | MR | Zbl
[59] Nazarov S. A., “Pogranichnye sloi i kraevye usloviya sharnirnogo opiraniya dlya tonkikh plastin”, Zap. nauch. semin. POMI, 257, 1999, 228–287 | MR | Zbl