The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a~domain with highly indented boundary
Algebra i analiz, Tome 22 (2010) no. 6, pp. 127-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic expansions are constructed for the eigenvalues of the Dirichlet problem for the biharmonic operator in a domain with highly indented and rapidly oscillating boundary (the Kirchhoff model of a thin plate). The asymptotic constructions depend heavily on the quantity $\gamma$ that describes the depth $O(\varepsilon^\gamma)$ of irregularity ($\varepsilon$ is the oscillation period). The resulting formulas relate the eigenvalues in domains with close irregular boundaries and make it possible, in particular, to control the order of perturbation and to find conditions ensuring the validity (or violation) of the classical Hadamard formula.
Keywords: biharmonic operator, Dirichlet problem, asymptotic expansions of eigenvalues, eigenoscillations of the Kirchhoff plate, rapid oscillation and nonregular perturbation of the boundary.
@article{AA_2010_22_6_a6,
     author = {V. A. Kozlov and S. A. Nazarov},
     title = {The spectrum asymptotics for the {Dirichlet} problem in the case of the biharmonic operator in a~domain with highly indented boundary},
     journal = {Algebra i analiz},
     pages = {127--184},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_6_a6/}
}
TY  - JOUR
AU  - V. A. Kozlov
AU  - S. A. Nazarov
TI  - The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a~domain with highly indented boundary
JO  - Algebra i analiz
PY  - 2010
SP  - 127
EP  - 184
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_6_a6/
LA  - ru
ID  - AA_2010_22_6_a6
ER  - 
%0 Journal Article
%A V. A. Kozlov
%A S. A. Nazarov
%T The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a~domain with highly indented boundary
%J Algebra i analiz
%D 2010
%P 127-184
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_6_a6/
%G ru
%F AA_2010_22_6_a6
V. A. Kozlov; S. A. Nazarov. The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a~domain with highly indented boundary. Algebra i analiz, Tome 22 (2010) no. 6, pp. 127-184. http://geodesic.mathdoc.fr/item/AA_2010_22_6_a6/

[1] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[2] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR

[3] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[4] Nazarov S. A., Asimptoticheskii analiz tonkikh plastin i sterzhnei, v. 1, Ponizhenie razmernosti i integralnye otsenki, Nauch. kn., Novosibirsk, 2002 | Zbl

[5] Hadamard J., “Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées”, ØE uvres. de Jacques Hadamard, v. 2, Centre Nat. Rech. Sci., Paris, 1968, 515–631

[6] Mosco U., “Convergence of convex sets and of solutions of variational inequalities”, Adv. Math., 3 (1969), 510–585 | DOI | MR | Zbl

[7] Kozlov V., “On the Hadamard formula for nonsmooth domains”, J. Differential Equations, 230:2 (2006), 532–555 | DOI | MR | Zbl

[8] Kozlov V., “$L^q$-perturbations of leading coefficients of elliptic operators: asymptotics of eigenvalues”, Abstr. Appl. Anal., 2006, Art. ID 26845, 15 pp. | MR

[9] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnom vozmuschenii oblasti, TGU, Tbilisi, 1981

[10] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[11] Sánchez-Palencia E., Nonhomogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980, 398 pp. | MR | Zbl

[12] Nazarov S. A., “Dvuchlennaya asimptotika reshenii spektralnykh zadach s singulyarnymi vozmuscheniyami”, Mat. sb., 181:3 (1990), 291–320 | MR | Zbl

[13] Achdou Y., Pironneau O., “Domain decomposition and wall laws”, C. R. Acad. Sci. Paris. Sér. I, 320 (1995), 541–547 | MR | Zbl

[14] Mohammadi B., Pironneau O., Valentin F., “Rough boundaries and wall laws”, Internat. J. Numer. Methods Fluids, 27:1–4, Special Issue (1998), 169–177 | 3.0.CO;2-4 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] Amirat Y., Chechkin G. A., Gadyl'shin R. R., “Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary”, Zh. vychisl. mat. i mat. fiz., 46:1 (2006), 102–115 | MR | Zbl

[16] Jäger W., Mikelić A., “On the roughness-induced effective boundary conditions for an incompressible viscous flow”, J. Differential Equations, 170 (2001), 96–122 | DOI | MR | Zbl

[17] Neuss N., Neuss-Radu M., Mikelić A., “Effective laws for the Poisson equation on domains with curved oscillating boundaries”, Appl. Anal., 85:5 (2006), 479–502 | DOI | MR | Zbl

[18] Bresch D., Gérard-Varet D., “Roughness-induced effects on the quasi-geostrophic model”, Comm. Math. Phys., 253:1 (2005), 81–119 | DOI | MR | Zbl

[19] Sánchez-Palencia E., Suquet P., “Friction and homogenization of a boundary”, Free Boundary Problems: Theory and Applications (Montecatini, 1981), v. I, II, Res. Notes in Math., 78, eds. A. Fasano, M. Primicerio, Pitman, Boston, MA, 1983, 561–571 | MR

[20] Nazarov S. A., “Asimptotika reshenii i modelirovanie zadach teorii uprugosti v oblasti s bystroostsilliruyuschei granitsei”, Izv. RAN. Ser. mat., 72:3 (2008), 103–158 | MR | Zbl

[21] Nazarov S. A., “Sobstvennye kolebaniya uprugogo tela s sherokhovatoi poverkhnostyu”, Prikl. mekh. i tekhn. fiz., 48:6 (2007), 103–114 | MR

[22] Mel'nyk T. A., Nazarov S. A., “Asymptotic structure of the spectrum of the Neumann problem in a thin comb-like domain”, C. R. Acad. Sci. Paris Sér. I, 319:12 (1994), 1343–1348 | MR

[23] Melnik T. A., Nazarov S. A., “Asimptotika resheniya spektralnoi zadachi Neimana v oblasti tipa ‘gustogo grebeshka’ ”, Tr. semin. im. I. G. Petrovskogo, 19, 1996, 138–173 | MR

[24] Blanchard D., Gaudiello A., Mel'nyk T. A., “Boundary homogenization and reduction of dimension in a Kirchhoff–Love plate”, SIAM J. Math. Anal., 39:6 (2008), 1764–1787 | DOI | MR | Zbl

[25] Gaudiello A., Zappale E., “Junction in a thin multidomain for a fourth order problem”, Math. Models Methods Appl. Sci., 16:12 (2006), 1887–1918 | DOI | MR | Zbl

[26] Nazarov S. A., “Asimptotika resheniya zadachi Dirikhle dlya uravneniya s bystro ostsilliruyuschimi koeffitsientami v pryamougolnike”, Mat. sb., 182:5 (1991), 692–722 | MR | Zbl

[27] Nazarov S. A., Olyushin M. V., “O vozmuscheniyakh sobstvennykh znachenii zadachi Neimana vsledstvie variatsii granitsy oblasti”, Algebra i analiz, 5:2 (1993), 169–188 | MR | Zbl

[28] Blanc F., Nazarov S. A., “Asymptotics of solutions to the Poisson problem in a perforated domain with corners”, J. Math. Pures Appl. (9), 76:10 (1997), 893–911 | MR | Zbl

[29] Caloz G., Costabel M., Dauge M., Vial G., “Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer”, Asymptot. Anal., 50:1–2 (2006), 121–173 | MR | Zbl

[30] Nazarov S. A., “Asimptotika resheniya i modelirovanie zadachi Dirikhle v uglovoi oblasti s bystroostsilliruyuschei granitsei”, Algebra i analiz, 19:2 (2007), 183–225 | MR | Zbl

[31] Nazarov S. A., “Asimptotika resheniya zadachi Dirikhle v uglovoi oblasti s periodicheski izmenyayuscheisya granitsei”, Mat. zametki, 49:5 (1991), 86–96 | MR | Zbl

[32] Nazarov S. A., “Zadacha Neimana v uglovykh oblastyakh s periodicheskimi i parabolicheskimi vozmuscheniyami granitsy”, Tr. Mosk. mat. o-va, 69, 2007, 183–243

[33] Bucur D., Buttazzo G., Variational methods in shape optimization problems, Progr. Nonlinear Differential Equations Appl., 65, Birkhäuser Boston, Inc., Boston, MA, 2005 | MR | Zbl

[34] Henrot A., Extremum problems for eigenvalues of elliptic operators, Frontiers in Math., Birkhäuser Verlag, Basel, 2006 | MR | Zbl

[35] Sokolowski J., Zolésio J.-P., Introduction to shape optimization. Shape sensitivity analysis, Springer Ser. Comput. Math., 16, Springer-Verlag, Berlin, 1992 | MR | Zbl

[36] Delfour M. C., Zolésio J.-P., Shapes and geometries. Analysis, differential calculus, and optimization, Adv. in Design and Control, 4, SIAM, Philadelphia, PA, 2001 | MR | Zbl

[37] Kawohl B., “Some nonconvex shape optimization problems”, Optimal Shape Design (Tróia, 1998), Lecture Notes in Math., 1740, Springer, Berlin, 2000, 7–46 | MR | Zbl

[38] Nadirashvili N. S., “Rayleigh's conjecture on the principal frequency of the clamped plate”, Arch. Rational Mech. Anal., 129:1 (1995), 1–10 | DOI | MR | Zbl

[39] Ashbaugh M. S., Benguria R. D., “On Rayleigh's conjecture for the clamped plate and its generalization to three dimensions”, Duke Math. J., 78:1 (1995), 1–17 | DOI | MR | Zbl

[40] Birman M. Sh., “Variatsionnye metody resheniya kraevykh zadach, analogichnye metodu Trefttsa”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1956, no. 3, 69–89 | MR | Zbl

[41] Babushka I., “Ustoichivost oblastei opredeleniya po otnosheniyu k osnovnym zadacham teorii differentsialnykh uravnenii v chastnykh proizvodnykh, glavnym obrazom v svyazi s teoriei uprugosti, I”, Chekhosl. mat. zh., 11 (1961), 76–105; “II”, 165–203

[42] Mazya V. G., Nazarov S. A., “Paradoksy predelnogo perekhoda v resheniyakh kraevykh zadach pri approksimatsii gladkikh oblastei mnogougolnymi”, Izv. AN SSSR. Ser. mat., 50:6 (1986), 1156–1177 | MR | Zbl

[43] Babushka I., Pitkäranta J., “The plate paradox for hard and soft simple support”, SIAM J. Math. Anal., 21:3 (1990), 551–576 | DOI | MR

[44] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi mat. nauk, 54:5 (1999), 77–142 | MR | Zbl

[45] Agmon S., Nirenberg L., “Properties of solutions of ordinary differential equations in Banach space”, Comm. Pure Appl. Math., 16 (1963), 121–239 | DOI | MR | Zbl

[46] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. o-va, 16, 1967, 219–292

[47] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[48] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Gëldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI

[49] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[50] Kozlov V. A., Maz'ya V. G., Rossmann J., Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[51] Williams M. L., “Stress singularities resulting from various boundary conditions in angular corners of plate”, J. Appl. Mech., 4:4 (1952), 526–528

[52] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | MR | Zbl

[53] Nazarov S. A., Romashev Yu. A., “Izmenenie koeffitsienta intensivnosti pri razrushenii peremychki mezhdu kollinearnymi treschinami”, Izv. AN ArmSSR. Mekh., 35:4 (1982), 30–40 | Zbl

[54] Nazarov S. A., Slutskii A. S., “Osrednenie smeshannoi kraevoi zadachi v oblasti s anizotropnoi fraktalnoi perforatsiei”, Izv. RAN. Ser. mat., 74:2 (2010), 165–194 | MR | Zbl

[55] Adolfsson V., Pipher J., “The inhomogeneous Dirichlet problem for $\Delta^2$ in Lipschitz domains”, J. Funct. Anal., 159:1 (1998), 137–190 | DOI | MR | Zbl

[56] Kozlov V. A., Maz'ya V. G., Rossmann J., Spectral problems associated with corner singularities of solutions to elliptic equations, Math. Surveys Monogr., 85, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[57] Zorin I. S., Nazarov S. A., “Kraevoi effekt pri izgibe tonkoi trekhmernoi plastiny”, Prikl. mat. i mekh., 53:4 (1989), 642–650 | MR | Zbl

[58] Nazarov S. A., “Ob effekte trekhmernosti vblizi vershiny treschiny v tonkoi plastine”, Prikl. mat. i mekh., 55:3 (1991), 500–510 | MR | Zbl

[59] Nazarov S. A., “Pogranichnye sloi i kraevye usloviya sharnirnogo opiraniya dlya tonkikh plastin”, Zap. nauch. semin. POMI, 257, 1999, 228–287 | MR | Zbl