On intrinsic isometries to Euclidean space
Algebra i analiz, Tome 22 (2010) no. 5, pp. 140-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

Compact metric spaces that admit intrinsic isometries to the Euclidean $d$-space are considered. Roughly, the main result states that the class of such spaces coincides with the class of inverse limits of Euclidean $d$-polyhedra.
Keywords: ontrinsic isometry, path isometry, Riemannian metric, polyhedron, pro-Euclidean space.
@article{AA_2010_22_5_a5,
     author = {A. Petrunin},
     title = {On intrinsic isometries to {Euclidean} space},
     journal = {Algebra i analiz},
     pages = {140--153},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_5_a5/}
}
TY  - JOUR
AU  - A. Petrunin
TI  - On intrinsic isometries to Euclidean space
JO  - Algebra i analiz
PY  - 2010
SP  - 140
EP  - 153
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_5_a5/
LA  - ru
ID  - AA_2010_22_5_a5
ER  - 
%0 Journal Article
%A A. Petrunin
%T On intrinsic isometries to Euclidean space
%J Algebra i analiz
%D 2010
%P 140-153
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_5_a5/
%G ru
%F AA_2010_22_5_a5
A. Petrunin. On intrinsic isometries to Euclidean space. Algebra i analiz, Tome 22 (2010) no. 5, pp. 140-153. http://geodesic.mathdoc.fr/item/AA_2010_22_5_a5/

[1] Akopyan A. V., $PL$-analog teoremy Nesha–Keipera predvaritelnaya versiya: http://www.moebiuscontest.ru/files/2007/akopyan.pdf

[2] Akopyan A. V., Tarasov A. S., “Konstruktivnoe dokazatelstvo teoremy Kirshbrauna”, Mat. zametki, 84:5 (2008), 781–784 | MR

[3] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, M.–Izhevsk, 2004, 496 pp.

[4] Burago D., Ivanov S., Shoenthal D., “Two counterexamples in low dimensional length geometry”, Algebra i analiz, 19:1 (2007), 46–59 | MR | Zbl

[5] Brehm U., “Extensions of distance reducing mappings to piecewise congruent mappings on $\mathbb R^m$”, J. Geom., 16:2 (1981), 187–193 | DOI | MR | Zbl

[6] Gromov M., Differentsialnye sootnosheniya s chastnymi proizvodnymi, Mir, M., 1990 | MR

[7] Zalgaller V. A., “Izometrichnoe vlozhenie poliedrov”, Dokl. AN SSSR, 123:4 (1958), 599–601 | MR | Zbl

[8] Knaster B., “Un continu dont tout sous-continu est indécomposable”, Fund. Math., 3 (1922), 247–286 | Zbl

[9] Krat S., Approximation problems in length geometry, thesis, 2005 | MR

[10] Lewis W., “The pseudo-arc”, Bol. Soc. Mat. Mexicana (3), 5:1 (1999), 25–77 | MR | Zbl

[11] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl