Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_5_a5, author = {A. Petrunin}, title = {On intrinsic isometries to {Euclidean} space}, journal = {Algebra i analiz}, pages = {140--153}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_5_a5/} }
A. Petrunin. On intrinsic isometries to Euclidean space. Algebra i analiz, Tome 22 (2010) no. 5, pp. 140-153. http://geodesic.mathdoc.fr/item/AA_2010_22_5_a5/
[1] Akopyan A. V., $PL$-analog teoremy Nesha–Keipera predvaritelnaya versiya: http://www.moebiuscontest.ru/files/2007/akopyan.pdf
[2] Akopyan A. V., Tarasov A. S., “Konstruktivnoe dokazatelstvo teoremy Kirshbrauna”, Mat. zametki, 84:5 (2008), 781–784 | MR
[3] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, M.–Izhevsk, 2004, 496 pp.
[4] Burago D., Ivanov S., Shoenthal D., “Two counterexamples in low dimensional length geometry”, Algebra i analiz, 19:1 (2007), 46–59 | MR | Zbl
[5] Brehm U., “Extensions of distance reducing mappings to piecewise congruent mappings on $\mathbb R^m$”, J. Geom., 16:2 (1981), 187–193 | DOI | MR | Zbl
[6] Gromov M., Differentsialnye sootnosheniya s chastnymi proizvodnymi, Mir, M., 1990 | MR
[7] Zalgaller V. A., “Izometrichnoe vlozhenie poliedrov”, Dokl. AN SSSR, 123:4 (1958), 599–601 | MR | Zbl
[8] Knaster B., “Un continu dont tout sous-continu est indécomposable”, Fund. Math., 3 (1922), 247–286 | Zbl
[9] Krat S., Approximation problems in length geometry, thesis, 2005 | MR
[10] Lewis W., “The pseudo-arc”, Bol. Soc. Mat. Mexicana (3), 5:1 (1999), 25–77 | MR | Zbl
[11] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl