Orthogonal subsets of root systems and the orbit method
Algebra i analiz, Tome 22 (2010) no. 5, pp. 104-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be the algebraic closure of a finite field, $G$ a Chevalley group over $k$, $U$ the maximal unipotent subgroup of $G$. To each orthogonal subset $D$ of the root system of $G$ and each set $\xi$ of $|D|$ nonzero scalars in $k$ one can assign the coadjoint orbit of $U$. It is proved that the dimension of such an orbit does not depend on $\xi$. An upper bound for this dimension is also given in terms of the Weyl group.
Keywords: orthogonal subsets of root systems, coadjoint orbits.
@article{AA_2010_22_5_a3,
     author = {M. V. Ignat'ev},
     title = {Orthogonal subsets of root systems and the orbit method},
     journal = {Algebra i analiz},
     pages = {104--130},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_5_a3/}
}
TY  - JOUR
AU  - M. V. Ignat'ev
TI  - Orthogonal subsets of root systems and the orbit method
JO  - Algebra i analiz
PY  - 2010
SP  - 104
EP  - 130
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_5_a3/
LA  - ru
ID  - AA_2010_22_5_a3
ER  - 
%0 Journal Article
%A M. V. Ignat'ev
%T Orthogonal subsets of root systems and the orbit method
%J Algebra i analiz
%D 2010
%P 104-130
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_5_a3/
%G ru
%F AA_2010_22_5_a3
M. V. Ignat'ev. Orthogonal subsets of root systems and the orbit method. Algebra i analiz, Tome 22 (2010) no. 5, pp. 104-130. http://geodesic.mathdoc.fr/item/AA_2010_22_5_a3/

[1] Andrè C. A. M., “The basic character table of the unitriangular group”, J. Algebra, 241 (2001), 437–471 | DOI | MR | Zbl

[2] Andrè C. A. M., Neto A. M., “Super-characters of finite unipotent groups of types $B_n$, $C_n$ and $D_n$”, J. Algebra, 305 (2006), 394–429 | DOI | MR | Zbl

[3] Boyarchenko M., Drinfeld V., A motivated introduction to character sheaves and the orbit method for unipotent groups in positive characteristic, arXiv: math/0609769v1[math.RT]

[4] Burbaki N., Gruppy i algebry Li. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdennye otrazheniyami sistemy kornei, Mir, M., 1972 | MR | Zbl

[5] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[6] Khamfris Dzh., Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[7] Ignatev M. V., Panov A. N., “Koprisoedinennye orbity gruppy $\mathrm{UT}(7,K)$”, Fundam. i prikl. mat., 13:5 (2007), 127–159, arXiv: math/0603649v3[math.RT] | MR

[8] Ignatev M. V., “Subregulyarnye kharaktery unitreugolnoi gruppy nad konechnym polem”, Fundam. i prikl. mat., 13:5 (2007), 103–125, arXiv: 0801.3079v2[math.RT] | MR | Zbl

[9] Ignatev M. V., “Bazisnye podsistemy v sistemakh kornei $B_n$ i $D_n$ i assotsiirovannye koprisoedinennye orbity”, Vestn. SamGU. Estestvennonauch. ser., 2008, no. 3, 124–148 | MR

[10] Ignatev M. V., “Ortogonalnye podmnozhestva klassicheskikh sistem kornei i koprisoedinennye orbity unipotentnykh grupp”, Mat. zametki, 86:1 (2009), 65–80, arXiv: 0904.2841v2[math.RT] | MR | Zbl

[11] Kazhdan D., “Proof of Springer's hypothesis”, Israel J. Math., 28 (1977), 272–286 | DOI | MR | Zbl

[12] Kirillov A. A., Lektsii po metodu orbit, Nauch. kniga, Novosibirsk, 2002

[13] Kirillov A. A., “Unitarnye predstavleniya nilpotentnykh grupp Li”, Uspekhi mat. nauk, 17:4 (1962), 57–110 | MR | Zbl

[14] Kirillov A. A., “Variations on the triangular theme”, Lie Groups and Lie Algebras, E. B. Dynkin's Seminar, Amer. Math. Soc. Transl. Ser. 2, 169, Amer. Math. Soc., Providence, RI, 1995, 43–73 | MR | Zbl

[15] Mukherjee S., Coadjoint orbits for $A_{n-1}^+$, $B_n^+$ and $D_n^+$, arXiv: math/0501332v1[math.RT] | MR

[16] Panov A. N., “Involyutsii v $S_n$ i assotsiirovannye koprisoedinennye orbity”, Zap. nauch. semin. POMI, 349, 2007, 150–173, arXiv: 0801.3022v1[math.RT]

[17] Srinivasan B., Representations of finite Chevalley groups, Lecture Notes in Math., 764, Springer, New York–Berlin, 1979 | MR | Zbl

[18] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[19] Steinberg R., Conjugacy classes in algebraic groups, Lecture Notes in Math., 366, Springer, New York–Berlin, 1974 | MR | Zbl