Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_5_a2, author = {N. A. Veniaminov}, title = {Homogenization of periodic differential operators of high order}, journal = {Algebra i analiz}, pages = {69--103}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_5_a2/} }
N. A. Veniaminov. Homogenization of periodic differential operators of high order. Algebra i analiz, Tome 22 (2010) no. 5, pp. 69-103. http://geodesic.mathdoc.fr/item/AA_2010_22_5_a2/
[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl
[2] Bensoussan A., Lions J-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publ. Co., Amsterdam–New York, 1978 | MR | Zbl
[3] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl
[4] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR | Zbl
[5] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb R^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR | Zbl
[6] Birman M. Sh., Suslina T. A., “Operatornye otsenki pogreshnosti pri usrednenii nestatsionarnykh periodicheskikh uravnenii”, Algebra i analiz, 20:6 (2008), 30–107 | MR
[7] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR
[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[9] Suslina T. A., “Homogenization of a periodic parabolic Cauchy problem”, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. (2), 220, Amer. Math. Soc., Providence, RI, 2007, 201–233 | MR | Zbl