Homogenization of periodic differential operators of high order
Algebra i analiz, Tome 22 (2010) no. 5, pp. 69-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

A periodic differential operator of the form $A_\varepsilon=(\mathbf D^p)^*g(\mathbf x/\varepsilon)\mathbf D^p$ is considered on $L_2(\mathbb R^d)$; here $g(x)$ is a positive definite symmetric tensor of order $2p$ periodic with respect to a lattice $\Gamma$. The behavior of the resolvent of the operator $A_\varepsilon$ as $\varepsilon\to0$ is studied. It is shown that the resolvent $(A_\varepsilon+I)^{-1}$ converges in the operator norm to the resolvent of the effective operator $A^0$ with constant coefficients. For the norm of the difference of resolvents, an estimate of order $\varepsilon$ is obtained.
Keywords: periodic differential operators, averaging, homogenization, threshold effect, operators of high order.
@article{AA_2010_22_5_a2,
     author = {N. A. Veniaminov},
     title = {Homogenization of periodic differential operators of high order},
     journal = {Algebra i analiz},
     pages = {69--103},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_5_a2/}
}
TY  - JOUR
AU  - N. A. Veniaminov
TI  - Homogenization of periodic differential operators of high order
JO  - Algebra i analiz
PY  - 2010
SP  - 69
EP  - 103
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_5_a2/
LA  - ru
ID  - AA_2010_22_5_a2
ER  - 
%0 Journal Article
%A N. A. Veniaminov
%T Homogenization of periodic differential operators of high order
%J Algebra i analiz
%D 2010
%P 69-103
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_5_a2/
%G ru
%F AA_2010_22_5_a2
N. A. Veniaminov. Homogenization of periodic differential operators of high order. Algebra i analiz, Tome 22 (2010) no. 5, pp. 69-103. http://geodesic.mathdoc.fr/item/AA_2010_22_5_a2/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[2] Bensoussan A., Lions J-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publ. Co., Amsterdam–New York, 1978 | MR | Zbl

[3] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[4] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR | Zbl

[5] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb R^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR | Zbl

[6] Birman M. Sh., Suslina T. A., “Operatornye otsenki pogreshnosti pri usrednenii nestatsionarnykh periodicheskikh uravnenii”, Algebra i analiz, 20:6 (2008), 30–107 | MR

[7] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR

[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[9] Suslina T. A., “Homogenization of a periodic parabolic Cauchy problem”, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. (2), 220, Amer. Math. Soc., Providence, RI, 2007, 201–233 | MR | Zbl