Criterion of analytic continuability of functions in principal invariant subspaces on convex domains in~$\mathbb C^n$
Algebra i analiz, Tome 22 (2010) no. 4, pp. 137-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

Subspaces invariant under differentiation are studied for spaces of functions analytic on domains of a many-dimensional complex space. For a wide class of domains (in particular, for arbitrary bounded convex domains), a criterion of analytic continuability is obtained for functions in arbitrary nontrivial closed principal invariant subspaces admitting spectral synthesis.
Keywords: analytic continuation, invariant subspace, plurisubharmonic function, convex domain.
@article{AA_2010_22_4_a4,
     author = {A. S. Krivosheev},
     title = {Criterion of analytic continuability of functions in principal invariant subspaces on convex domains in~$\mathbb C^n$},
     journal = {Algebra i analiz},
     pages = {137--197},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_4_a4/}
}
TY  - JOUR
AU  - A. S. Krivosheev
TI  - Criterion of analytic continuability of functions in principal invariant subspaces on convex domains in~$\mathbb C^n$
JO  - Algebra i analiz
PY  - 2010
SP  - 137
EP  - 197
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_4_a4/
LA  - ru
ID  - AA_2010_22_4_a4
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%T Criterion of analytic continuability of functions in principal invariant subspaces on convex domains in~$\mathbb C^n$
%J Algebra i analiz
%D 2010
%P 137-197
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_4_a4/
%G ru
%F AA_2010_22_4_a4
A. S. Krivosheev. Criterion of analytic continuability of functions in principal invariant subspaces on convex domains in~$\mathbb C^n$. Algebra i analiz, Tome 22 (2010) no. 4, pp. 137-197. http://geodesic.mathdoc.fr/item/AA_2010_22_4_a4/

[1] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR | Zbl

[2] Hadamard J., “Essai sur l'étude des fonctions données par leur développement de Taylor”, J. Math. Pures Appl. Ser. 4, 8 (1892), 101–106

[3] Fabry E., “Sur les points singuliers d'une fonction donnée par son développement de Taylor”, Ann. École Norm. Sup. (3), 13 (1896), 367–399 | MR | Zbl

[4] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. I. Spektralnyi sintez na vypuklykh oblastyakh”, Mat. sb., 87(129):4 (1972), 459–489 | MR | Zbl

[5] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi sintez na vypuklykh oblastyakh”, Mat. sb., 88(130):1 (1972), 3–30 | MR | Zbl

[6] Yulmukhametov R. S., “Odnorodnye uravneniya svertki”, Dokl. AN SSSR, 316:2 (1991), 312–315 | MR | Zbl

[7] Krivosheev A. S., Napalkov V. V., “Kompleksnyi analiz i operatory svertki”, Uspekhi mat. nauk, 47:6 (1992), 3–58 | MR | Zbl

[8] Krasichkov-Ternovskii I. F., “Spektralnyi sintez i analiticheskoe prodolzhenie”, Uspekhi mat. nauk, 58:1 (2003), 33–112 | MR | Zbl

[9] Polya G., “Uber die Exstenz unendlich vieler singularer Punkte auf der Konvergenzgeraden gewisser Dirichlet'sher Reihen”, Sitzungber. Preu. Akad. Wiss., 1923, 45–50 | Zbl

[10] Polya G., “Eine Verallgemeinerung des Fabryschen Lückensatzes”, Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl., 2 (1927), 187–195

[11] Bernstein V., Lecons sur les progress de la theorie des series de Dirichlet, Gauthier-Villars, Paris, 1933 | Zbl

[12] Ostrowski A., “Uber die analytische Fortsetzung von Taylorschen und Dirichletschen Reihen”, Math. Ann., 129 (1955), 1–43 | DOI | MR | Zbl

[13] Leontev A. F., “O klasse funktsii, opredelennykh ryadami polinomov Dirikhle”, Uspekhi mat. nauk, 3:4 (1948), 176–180 | MR

[14] Leontev A. F., “Ryady polinomov Dirikhle i ikh obobscheniya”, Tr. Mat. in-ta AN SSSR, 39, 1951, 3–214 | MR | Zbl

[15] Kahane J. P., “Sur quelques problèmes d'unicité et de prolongement, relatifs aux fonctions approchables par des sommes d'exponentielles”, Ann. Inst. Fourier (Grenoble), 5 (1953–1954), 39–130 (1955) | MR

[16] Leontev A. F., “O skhodimosti posledovatelnosti polinomov Dirikhle”, Dokl. AN SSSR, 108:1 (1956), 23–26 | MR

[17] Leontev A. F., “Novoe dokazatelstvo odnoi teoremy o skhodimosti posledovatelnosti polinomov Dirikhle”, Uspekhi mat. nauk, 12:3 (1957), 165–170 | MR | Zbl

[18] Leontev A. F., “O svoistvakh posledovatelnostei polinomov Dirikhle, skhodyaschikhsya na intervale mnimoi osi”, Izv. AN SSSR. Ser. mat., 29:2 (1965), 269–328 | MR | Zbl

[19] Schwartz L., Étude des sommes d'exponentielles, Hermann, Paris, 1959 | MR | Zbl

[20] Baillette A., “Approximation de fonctions par des sommes d'exponentielles”, C. R. Acad. Sci. Paris, 249 (1959), 2470–2471 | MR | Zbl

[21] Baillette A., “Fonctions approchables par des sommes d'exponentielles”, J. Anal. Math., 10 (1962–1963), 91–115 | DOI | MR | Zbl

[22] Krasichkov-Ternovskii I. F., “O skhodimosti polinomov Dirikhle”, Sib. mat. zh., 7:5 (1966), 1039–1058

[23] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. Analiticheskoe prodolzhenie”, Izv. AN SSSR. Ser. mat., 37:4 (1973), 931–945 | MR | Zbl

[24] Krivosheev A. S., “Analiticheskoe prodolzhenie funktsii iz invariantnykh podprostranstv v vypuklykh oblastyakh kompleksnogo prostranstva”, Izv. RAN. Ser. mat., 62:2 (1998), 75–102 | MR | Zbl

[25] Krivosheev A. S., “Analiticheskoe prodolzhenie funktsii iz invariantnykh podprostranstv”, Dokl. RAN, 386:4 (2002), 450–452 | MR | Zbl

[26] Krivosheev A. S., “Kriterii analiticheskogo prodolzheniya funktsii iz invariantnykh podprostranstv v vypuklykh oblastyakh kompleksnoi ploskosti”, Izv. RAN. Ser. mat., 68:1 (2004), 43–78 | MR | Zbl

[27] Kiselman C. O., “Prolongement des solutions d'une équation aux dérivées partielles à coefficieents constants”, Bull. Soc. Math. France, 97 (1969), 329–356 | MR | Zbl

[28] Sebbar A., “Prolongement des solutions holomorphes de certains opérateurs différentiels d'ordre infini à coefficients constants”, Lecture Notes in Math., 822, Springer, Berlin, 1980, 199–220 | MR

[29] Meril A., Struppa D. C., “Convolutors in spaces of holomorphic functions”, Lecture Notes in Math., 1276, Springer, Berlin, 1987, 253–275 | MR

[30] Krivosheev A. S., “Ob indikatorakh tselykh funktsii i prodolzhenii reshenii odnorodnogo uravneniya svertki”, Mat. sb., 184:8 (1993), 81–108 | MR | Zbl

[31] Ishimura R., Okada Y., “The existence and the continuation of holomorphic solutions for convolution equations in tube domains”, Bull. Soc. Math. France, 122 (1994), 413–433 | MR | Zbl

[32] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[33] Ronkin L. I., Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | MR | Zbl

[34] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[35] Grotendik A. O., “O prostranstvakh $(F)$ i $(DF)$”, Matematika. Period. sb. per. in. st., 2:3 (1958), 81–127

[36] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. Chast I. Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[37] Lelon P., Gruman L., Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR | Zbl

[38] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[39] Yulmukhametov R. S., “Tselye funktsii mnogikh peremennykh s zadannym povedeniem v beskonechnosti”, Izv. RAN. Ser. mat., 60:4 (1996), 205–224 | MR | Zbl

[40] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956