Cyclicity of elementary polycycles with fixed number of singular points in generic $k$-parameter families
Algebra i analiz, Tome 22 (2010) no. 4, pp. 57-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate is found for the number of limit cycles arising from polycycles in generic finite-parameter families of differential equations on the two-sphere. It is proved that if the polycycles have a fixed number of singular points and all the singular points are elementary, then an estimate of cyclicity holds true, which is polynomial in the number of parameters of the family.
Keywords: number of limit cycles, polycycle, Hilbert's sixteenth problem, Hilbert–Arnol'd problem.
@article{AA_2010_22_4_a2,
     author = {P. I. Kaleda and I. V. Shchurov},
     title = {Cyclicity of elementary polycycles with fixed number of singular points in generic $k$-parameter families},
     journal = {Algebra i analiz},
     pages = {57--75},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_4_a2/}
}
TY  - JOUR
AU  - P. I. Kaleda
AU  - I. V. Shchurov
TI  - Cyclicity of elementary polycycles with fixed number of singular points in generic $k$-parameter families
JO  - Algebra i analiz
PY  - 2010
SP  - 57
EP  - 75
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_4_a2/
LA  - ru
ID  - AA_2010_22_4_a2
ER  - 
%0 Journal Article
%A P. I. Kaleda
%A I. V. Shchurov
%T Cyclicity of elementary polycycles with fixed number of singular points in generic $k$-parameter families
%J Algebra i analiz
%D 2010
%P 57-75
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_4_a2/
%G ru
%F AA_2010_22_4_a2
P. I. Kaleda; I. V. Shchurov. Cyclicity of elementary polycycles with fixed number of singular points in generic $k$-parameter families. Algebra i analiz, Tome 22 (2010) no. 4, pp. 57-75. http://geodesic.mathdoc.fr/item/AA_2010_22_4_a2/

[1] Arnold V., Afraimovich V., Ilyashenko Yu., Shilnikov L., “Teoriya bifurkatsii”, Dinamicheskie sistemy – V, Itogi nauki i tekhniki. Sovrem. probl. mat. Fundam. napravl., 5, VINITI, M., 1986, 5–218 | MR | Zbl

[2] Ilyashenko Yu., “Normal forms for local families and nonlocal bifurcations”, Astérisque, 222 (1994), 233–258 | MR | Zbl

[3] Ilyashenko Yu., Yakovenko S., “Konechno-gladkie normalnye formy lokalnykh semeistv diffeomorfizmov i vektornykh polei”, Uspekhi mat. nauk, 46:1 (1991), 3–39 | MR | Zbl

[4] Ilyashenko Y., Yakovenko S., “Finite cyclicity of elementary polycycles in generic families”, Concerning the Hilbert 16th Problem, Amer. Math. Soc. Transl. Ser. 2, 165, Amer. Math. Soc., Providence, RI, 1995, 21–95 | MR | Zbl

[5] Kaloshin V., “The existential Hilbert 16th problem and an estimate for cyclicity of elementary polycycles”, Invent. Math., 151:3 (2003), 451–512 | DOI | MR | Zbl

[6] Khovanskii A. G., Malochleny, FAZIS, M., 1997 | MR

[7] Roussarie R., “A note on finite cyclicity property and Hilbert's 16th problem”, Dynamical Systems (Valparaiso, 1986), Lecture Notes in Math., 1331, eds. R. Bamon, R. Lavarca, J. Palis, Springer-Verlag, Berlin, 1988, 161–168 | MR