Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_4_a1, author = {V. G. Zhuravlev}, title = {Parametrization of a~two-dimensional quasiperiodic {Rauzy} tiling}, journal = {Algebra i analiz}, pages = {21--56}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_4_a1/} }
V. G. Zhuravlev. Parametrization of a~two-dimensional quasiperiodic Rauzy tiling. Algebra i analiz, Tome 22 (2010) no. 4, pp. 21-56. http://geodesic.mathdoc.fr/item/AA_2010_22_4_a1/
[1] Zhuravlev V. G.,, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zap. nauch. semin. POMI, 322, 2005, 83–106 | MR | Zbl
[2] Zhuravlev V. G., “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Ser. mat., 71:2 (2007), 89–122 | MR | Zbl
[3] Zhuravlev V. G., “On additivity property of the complexity function related to Rauzy tiling”, Analytic and Probabilistic Methods in Number Theory, TEV, Vilnius, 2007, 240–254 | MR | Zbl
[4] Zhuravlev V. G., Maleev A. V., “Funktsiya slozhnosti i forsing v dvumernom kvaziperiodicheskom razbienii Rozi”, Kristallografiya, 52:4 (2007), 610–616
[5] Zhuravlev V. G., Maleev A. V., “Posloinyi rost kvaziperiodicheskogo razbieniya Rozi”, Kristallografiya, 52:2 (2007), 204–210
[6] Zhuravlev V. G., Maleev A. V., “Kvaziperiody posloinogo rosta razbieniya Rozi”, Kristallografiya, 52:1 (2007), 7–14
[7] Zhuravlev V. G., Maleev A. V., “Difraktsiya na dvumernom kvaziperiodicheskom razbienii Rozi”, Kristallografiya, 53:6 (2008), 978–986
[8] Zhuravlev V. G., Maleev A. V., “Postroenie dvumernogo kvaziperiodicheskogo razbieniya Rozi s pomoschyu preobrazovaniya podobiya”, Kristallografiya, 54:3 (2009), 389–399
[9] Maleev A. V., Shutov A. V, Zhuravlev V. G., “Kvaziperiodicheskie razbieniya ploskosti, postroennye na osnove kubicheskikh irratsionalnostei”, Dvadtsat sedmye nauchnye chteniya im. akad. N. V. Belova, Nizhnii Novgorod, 2008, 29–31
[10] Akiyama S., “Self affine tiling and Pisot numeration system”, Number Theory and its Applications (Kyoto, 1997), Dev. Math., 2, Kluwer, Dordrecht, 1999, 7–17 | MR | Zbl
[11] Akiyama S., “Cubic Pisot units with finite beta expansions”, Algebraic Number Theory and Diophantine Analysis (Graz, 1988), de Gruyter, Berlin, 2000, 11–26 | MR | Zbl
[12] Arnoux P., Berthé V., Ito S., “Discrete plane, $\mathbb Z^2$-actions, Jacobi–Perron algorithm and substitutions”, Ann. Inst. Fourier (Grenoble), 52 (2002), 305–349 | MR | Zbl
[13] Fogg N. P., Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., 1794, Springer-Verlag, Berlin, 2002 | MR | Zbl
[14] Ito S., Ohtsuki M., “Modified Jacobi–Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms”, Tokyo J. Math., 16:2 (1993), 441–472 | DOI | MR | Zbl
[15] Ito S., Fujii J., Higashino H., Yasutomi S., “On simultaneous approximation to $(\alpha,\alpha)^2$ with $\alpha^3+k\alpha-1=0$”, J. Number Theory, 99 (2003), 255–283 | DOI | MR | Zbl
[16] Meyer Y., Algebraic numbers and harmonic analysis, North-Holland Math. Library, 2, North-Holland, Amsterdam–London, 1972 | MR | Zbl
[17] Moody R. V., “Meyer sets and their duals”, The Mathematics of Long-Range Aperiodic Order (Waterloo, ON, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys., 489, Kluwer, Dordrecht, 1997, 403–441 | MR | Zbl
[18] Rauzy G., “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | MR | Zbl