Parametrization of a~two-dimensional quasiperiodic Rauzy tiling
Algebra i analiz, Tome 22 (2010) no. 4, pp. 21-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of an affine inflation $B$, a two-dimensional quasiperiodic Rauzy tiling $\mathcal R^\infty$ is constructed, together with a parametrization of its tiles by algebraic integers $\mathbb Z[\zeta]\subset[0,1)$, where $\zeta$ is a certain Pisot number (specifically, the real root of the polynomial $x^3+x^2+x-1$). The coronas (clusters) of the tiling $\mathcal R^\infty$ are classified by disjoint half-intervals in $[0,1)$ the lengths of which are proportional to the frequencies of the corresponding corona types. It is proved that, for each of the three basis tiles, there exists an odd number of corona types of an arbitrary level. The parametrization obtained describes local rules (tile adjacency conditions) for $\mathcal R^\infty$, and it conjugates the action of the affine rotation $B$ of the plane $\mathbb R^2$ by an irrational angle with a shift of the coding sequences.
Keywords: quasiperiodic tilings, local rules, divisible figures, two-dimensional approximations.
@article{AA_2010_22_4_a1,
     author = {V. G. Zhuravlev},
     title = {Parametrization of a~two-dimensional quasiperiodic {Rauzy} tiling},
     journal = {Algebra i analiz},
     pages = {21--56},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_4_a1/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Parametrization of a~two-dimensional quasiperiodic Rauzy tiling
JO  - Algebra i analiz
PY  - 2010
SP  - 21
EP  - 56
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_4_a1/
LA  - ru
ID  - AA_2010_22_4_a1
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Parametrization of a~two-dimensional quasiperiodic Rauzy tiling
%J Algebra i analiz
%D 2010
%P 21-56
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_4_a1/
%G ru
%F AA_2010_22_4_a1
V. G. Zhuravlev. Parametrization of a~two-dimensional quasiperiodic Rauzy tiling. Algebra i analiz, Tome 22 (2010) no. 4, pp. 21-56. http://geodesic.mathdoc.fr/item/AA_2010_22_4_a1/

[1] Zhuravlev V. G.,, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zap. nauch. semin. POMI, 322, 2005, 83–106 | MR | Zbl

[2] Zhuravlev V. G., “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Ser. mat., 71:2 (2007), 89–122 | MR | Zbl

[3] Zhuravlev V. G., “On additivity property of the complexity function related to Rauzy tiling”, Analytic and Probabilistic Methods in Number Theory, TEV, Vilnius, 2007, 240–254 | MR | Zbl

[4] Zhuravlev V. G., Maleev A. V., “Funktsiya slozhnosti i forsing v dvumernom kvaziperiodicheskom razbienii Rozi”, Kristallografiya, 52:4 (2007), 610–616

[5] Zhuravlev V. G., Maleev A. V., “Posloinyi rost kvaziperiodicheskogo razbieniya Rozi”, Kristallografiya, 52:2 (2007), 204–210

[6] Zhuravlev V. G., Maleev A. V., “Kvaziperiody posloinogo rosta razbieniya Rozi”, Kristallografiya, 52:1 (2007), 7–14

[7] Zhuravlev V. G., Maleev A. V., “Difraktsiya na dvumernom kvaziperiodicheskom razbienii Rozi”, Kristallografiya, 53:6 (2008), 978–986

[8] Zhuravlev V. G., Maleev A. V., “Postroenie dvumernogo kvaziperiodicheskogo razbieniya Rozi s pomoschyu preobrazovaniya podobiya”, Kristallografiya, 54:3 (2009), 389–399

[9] Maleev A. V., Shutov A. V, Zhuravlev V. G., “Kvaziperiodicheskie razbieniya ploskosti, postroennye na osnove kubicheskikh irratsionalnostei”, Dvadtsat sedmye nauchnye chteniya im. akad. N. V. Belova, Nizhnii Novgorod, 2008, 29–31

[10] Akiyama S., “Self affine tiling and Pisot numeration system”, Number Theory and its Applications (Kyoto, 1997), Dev. Math., 2, Kluwer, Dordrecht, 1999, 7–17 | MR | Zbl

[11] Akiyama S., “Cubic Pisot units with finite beta expansions”, Algebraic Number Theory and Diophantine Analysis (Graz, 1988), de Gruyter, Berlin, 2000, 11–26 | MR | Zbl

[12] Arnoux P., Berthé V., Ito S., “Discrete plane, $\mathbb Z^2$-actions, Jacobi–Perron algorithm and substitutions”, Ann. Inst. Fourier (Grenoble), 52 (2002), 305–349 | MR | Zbl

[13] Fogg N. P., Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., 1794, Springer-Verlag, Berlin, 2002 | MR | Zbl

[14] Ito S., Ohtsuki M., “Modified Jacobi–Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms”, Tokyo J. Math., 16:2 (1993), 441–472 | DOI | MR | Zbl

[15] Ito S., Fujii J., Higashino H., Yasutomi S., “On simultaneous approximation to $(\alpha,\alpha)^2$ with $\alpha^3+k\alpha-1=0$”, J. Number Theory, 99 (2003), 255–283 | DOI | MR | Zbl

[16] Meyer Y., Algebraic numbers and harmonic analysis, North-Holland Math. Library, 2, North-Holland, Amsterdam–London, 1972 | MR | Zbl

[17] Moody R. V., “Meyer sets and their duals”, The Mathematics of Long-Range Aperiodic Order (Waterloo, ON, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys., 489, Kluwer, Dordrecht, 1997, 403–441 | MR | Zbl

[18] Rauzy G., “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | MR | Zbl