On perturbations of the isometric semigroup of shifts on the semiaxis
Algebra i analiz, Tome 22 (2010) no. 4, pp. 1-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Perturbations $(\widetilde\tau_t)_{t\ge0}$ of the semigroup of shifts $(\tau_t)_{t\ge 0}$ on $L^2(\mathbb R_+)$ are studied under the assumption that $\widetilde\tau_t-\tau_t$ belongs to a certain Schatten–von Neumann class $\mathfrak S_p$ with $p\ge1$. It is shown that, for the unitary component in the Wold–Kolmogorov decomposition of the cogenerator of the semigroup $(\widetilde\tau_t)_{t\ge0}$, any singular spectral type may be achieved by $\mathfrak S_1$-perturbations. An explicit construction is provided for a perturbation with a given spectral type, based on the theory of model spaces of the Hardy space $H^2$. Also, it is shown that an arbitrary prescribed spectral type may be obtained for the unitary component of the perturbed semigroup by a perturbation of class $\mathfrak S_p$ with $p>1$.
Keywords: semigroup of shifts, trace-class perturbation, Schatten–von Neumann ideals, Hardy space, inner function.
@article{AA_2010_22_4_a0,
     author = {G. G. Amosov and A. D. Baranov and V. V. Kapustin},
     title = {On perturbations of the isometric semigroup of shifts on the semiaxis},
     journal = {Algebra i analiz},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_4_a0/}
}
TY  - JOUR
AU  - G. G. Amosov
AU  - A. D. Baranov
AU  - V. V. Kapustin
TI  - On perturbations of the isometric semigroup of shifts on the semiaxis
JO  - Algebra i analiz
PY  - 2010
SP  - 1
EP  - 20
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_4_a0/
LA  - ru
ID  - AA_2010_22_4_a0
ER  - 
%0 Journal Article
%A G. G. Amosov
%A A. D. Baranov
%A V. V. Kapustin
%T On perturbations of the isometric semigroup of shifts on the semiaxis
%J Algebra i analiz
%D 2010
%P 1-20
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_4_a0/
%G ru
%F AA_2010_22_4_a0
G. G. Amosov; A. D. Baranov; V. V. Kapustin. On perturbations of the isometric semigroup of shifts on the semiaxis. Algebra i analiz, Tome 22 (2010) no. 4, pp. 1-20. http://geodesic.mathdoc.fr/item/AA_2010_22_4_a0/

[1] Amosov G. G., Baranov A. D., “O dilatatsii szhimayuschikh kotsiklov i kotsiklicheskikh vozmuscheniyakh gruppy sdvigov na pryamoi”, Mat. zametki, 79:1 (2006), 3–18 | MR | Zbl

[2] Amosov G. G., Baranov A. D., “O dilatatsii szhimayuschikh kotsiklov i kotsiklicheskikh vozmuscheniyakh gruppy sdvigov na pryamoi, II”, Mat. zametki, 79:5 (2006), 779–780 | MR | Zbl

[3] Baranov A. D., “Vlozheniya modelnykh podprostranstv klassa Khardi: kompaktnost i idealy Shattena–fon Neimana”, Izv. RAN. Ser. mat., 73:6 (2009), 3–28 | MR | Zbl

[4] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[5] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[6] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[7] Parfenov O. G., “O svoistvakh operatorov vlozheniya nekotorykh klassov analiticheskikh funktsii”, Algebra i analiz, 3:2 (1991), 199–222 | MR | Zbl

[8] Parfenov O. G., “Vesovye otsenki preobrazovaniya Fure”, Zap. nauch. semin. POMI, 222, 1995, 151–162 | MR | Zbl

[9] Poltoratskii A. G., “Granichnoe povedenie psevdoprodolzhimykh funktsii”, Algebra i analiz, 5:2 (1993), 189–210 | MR | Zbl

[10] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[11] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[12] Yafaev D. R., Matematicheskaya teoriya rasseyaniya, SPbGU, SPb., 1994 | MR

[13] Ahern P. R., Clark D. N., “Radial limits and invariant subspaces”, Amer. J. Math., 92 (1970), 332–342 | DOI | MR | Zbl

[14] Ahern P. R., Clark D. N., “On functions orthogonal to invariant subspaces”, Acta Math., 124 (1970), 191–204 | DOI | MR | Zbl

[15] Amosov G. G., “Cocycle perturbation of quasifree algebraic $K$-flow leads to required asymptotic dynamics of associated completely positive semigroup”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 3 (2000), 237–246 | MR | Zbl

[16] Amosov G. G., Baranov A. D., “On perturbations of the group of shifts on the line by unitary cocycles”, Proc. Amer. Math. Soc., 132:11 (2004), 3269–3273 | DOI | MR | Zbl

[17] Arveson W., Continuous analogues of Fock space, Mem. Amer. Math. Soc., 80, no. 409, 1989, 66 pp. | MR

[18] Clark D. N., “One-dimensional perturbations of restricted shifts”, J. Anal. Math., 25 (1972), 169–191 | DOI | MR | Zbl

[19] Davies E. B., “Lipschitz continuity of functions of operators in the Schatten classes”, J. London Math. Soc. (2), 37:1 (1988), 148–157 | DOI | MR | Zbl

[20] Kapustin V., Poltoratski A., “Boundary convergence of vector-valued pseudocontinuable functions”, J. Funct. Anal., 238:1 (2006), 313–326 | DOI | MR | Zbl

[21] Nikolski N. K., Operators, functions, and systems: an easy reading, v. 1, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 ; v. 2, 93 | MR | Zbl | MR | Zbl

[22] Sarason D., Sub-Hardy Hilbert spaces in the unit disc, Univ. Arkansas Lecture Notes in Math. Sci., 10, Wiley-Intersci., New York, 1994 | MR