Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_4_a0, author = {G. G. Amosov and A. D. Baranov and V. V. Kapustin}, title = {On perturbations of the isometric semigroup of shifts on the semiaxis}, journal = {Algebra i analiz}, pages = {1--20}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_4_a0/} }
TY - JOUR AU - G. G. Amosov AU - A. D. Baranov AU - V. V. Kapustin TI - On perturbations of the isometric semigroup of shifts on the semiaxis JO - Algebra i analiz PY - 2010 SP - 1 EP - 20 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2010_22_4_a0/ LA - ru ID - AA_2010_22_4_a0 ER -
G. G. Amosov; A. D. Baranov; V. V. Kapustin. On perturbations of the isometric semigroup of shifts on the semiaxis. Algebra i analiz, Tome 22 (2010) no. 4, pp. 1-20. http://geodesic.mathdoc.fr/item/AA_2010_22_4_a0/
[1] Amosov G. G., Baranov A. D., “O dilatatsii szhimayuschikh kotsiklov i kotsiklicheskikh vozmuscheniyakh gruppy sdvigov na pryamoi”, Mat. zametki, 79:1 (2006), 3–18 | MR | Zbl
[2] Amosov G. G., Baranov A. D., “O dilatatsii szhimayuschikh kotsiklov i kotsiklicheskikh vozmuscheniyakh gruppy sdvigov na pryamoi, II”, Mat. zametki, 79:5 (2006), 779–780 | MR | Zbl
[3] Baranov A. D., “Vlozheniya modelnykh podprostranstv klassa Khardi: kompaktnost i idealy Shattena–fon Neimana”, Izv. RAN. Ser. mat., 73:6 (2009), 3–28 | MR | Zbl
[4] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR
[5] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[6] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR
[7] Parfenov O. G., “O svoistvakh operatorov vlozheniya nekotorykh klassov analiticheskikh funktsii”, Algebra i analiz, 3:2 (1991), 199–222 | MR | Zbl
[8] Parfenov O. G., “Vesovye otsenki preobrazovaniya Fure”, Zap. nauch. semin. POMI, 222, 1995, 151–162 | MR | Zbl
[9] Poltoratskii A. G., “Granichnoe povedenie psevdoprodolzhimykh funktsii”, Algebra i analiz, 5:2 (1993), 189–210 | MR | Zbl
[10] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR
[11] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962
[12] Yafaev D. R., Matematicheskaya teoriya rasseyaniya, SPbGU, SPb., 1994 | MR
[13] Ahern P. R., Clark D. N., “Radial limits and invariant subspaces”, Amer. J. Math., 92 (1970), 332–342 | DOI | MR | Zbl
[14] Ahern P. R., Clark D. N., “On functions orthogonal to invariant subspaces”, Acta Math., 124 (1970), 191–204 | DOI | MR | Zbl
[15] Amosov G. G., “Cocycle perturbation of quasifree algebraic $K$-flow leads to required asymptotic dynamics of associated completely positive semigroup”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 3 (2000), 237–246 | MR | Zbl
[16] Amosov G. G., Baranov A. D., “On perturbations of the group of shifts on the line by unitary cocycles”, Proc. Amer. Math. Soc., 132:11 (2004), 3269–3273 | DOI | MR | Zbl
[17] Arveson W., Continuous analogues of Fock space, Mem. Amer. Math. Soc., 80, no. 409, 1989, 66 pp. | MR
[18] Clark D. N., “One-dimensional perturbations of restricted shifts”, J. Anal. Math., 25 (1972), 169–191 | DOI | MR | Zbl
[19] Davies E. B., “Lipschitz continuity of functions of operators in the Schatten classes”, J. London Math. Soc. (2), 37:1 (1988), 148–157 | DOI | MR | Zbl
[20] Kapustin V., Poltoratski A., “Boundary convergence of vector-valued pseudocontinuable functions”, J. Funct. Anal., 238:1 (2006), 313–326 | DOI | MR | Zbl
[21] Nikolski N. K., Operators, functions, and systems: an easy reading, v. 1, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 ; v. 2, 93 | MR | Zbl | MR | Zbl
[22] Sarason D., Sub-Hardy Hilbert spaces in the unit disc, Univ. Arkansas Lecture Notes in Math. Sci., 10, Wiley-Intersci., New York, 1994 | MR