Hirota difference equation and a~commutator identity on an associative algebra
Algebra i analiz, Tome 22 (2010) no. 3, pp. 191-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

In earlier papers of the author it was shown that some simple commutator identities on an associative algebra generate integrable nonlinear equations. Here, this observation is generalized to the case of difference nonlinear equations. The identity under study leads, under a special realization of the elements of the associative algebra, to the famous Hirota difference equation. Direct and inverse problems are considered for this equation, as well as some properties of its solutions. Finally, some other commutator identities are discussed and their relationship with integrable nonlinear equations, both differential and difference, is demonstrated.
Keywords: Hirota difference equation, commutator identity, extended operators, direct and inverse problems.
@article{AA_2010_22_3_a9,
     author = {A. K. Pogrebkov},
     title = {Hirota difference equation and a~commutator identity on an associative algebra},
     journal = {Algebra i analiz},
     pages = {191--205},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a9/}
}
TY  - JOUR
AU  - A. K. Pogrebkov
TI  - Hirota difference equation and a~commutator identity on an associative algebra
JO  - Algebra i analiz
PY  - 2010
SP  - 191
EP  - 205
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a9/
LA  - en
ID  - AA_2010_22_3_a9
ER  - 
%0 Journal Article
%A A. K. Pogrebkov
%T Hirota difference equation and a~commutator identity on an associative algebra
%J Algebra i analiz
%D 2010
%P 191-205
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_3_a9/
%G en
%F AA_2010_22_3_a9
A. K. Pogrebkov. Hirota difference equation and a~commutator identity on an associative algebra. Algebra i analiz, Tome 22 (2010) no. 3, pp. 191-205. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a9/

[1] Pogrebkov A. K., “Kommutatornye tozhdestva na assotsiativnykh algebrakh i integriruemost nelineinykh evolyutsionnykh uravnenii”, Teor. i mat. fiz., 154:3 (2008), 477–491 | MR | Zbl

[2] Pogrebkov A. K., “2D Toda chain and associated commutator identity”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 261–269 | MR | Zbl

[3] Boiti M., Pempinelli F., Pogrebkov A. K., Polivanov M. C., “Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schrödinger problem and the $KPI$ equation”, Teor. i mat. fiz., 93:2 (1992), 181–210 | MR | Zbl

[4] Boiti M., Pempinelli F., Pogrebkov A. K., Polivanov M. C., “Resolvent approach for the nonstationary Schrödinger equation”, Inverse Problems, 8 (1992), 331–364 | DOI | MR | Zbl

[5] Boiti M., Pempinelli F., Pogrebkov A., “Properties of solutions of the Kadomtsev–Petviashvili I equation”, J. Math. Phys., 35 (1994), 4683–4718 | DOI | MR | Zbl

[6] Boiti M., Pempinelli F., Pogrebkov A. K., Prinari B., “Extended resolvent and inverse scattering with an application to KPI”, J. Math. Phys., 44 (2003), 3309–3340 | DOI | MR | Zbl

[7] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations”, Nonlinear Integrable Systems: Classical Theory and Quantum Theory (Kyoto, 1981), World Sci., Singapore, 1983, 39–119 | MR

[8] Orlov A. Yu., Schulman E. I., “Additional symmetries for integrable equations and conformal algebra representation”, Lett. Math. Phys., 12 (1986), 171–179 | DOI | MR | Zbl

[9] Orlov A. Yu., “Vertex operator, $\overline\partial$-problem, symmetries, variational identities, and Hamiltonian formalism for $(2+1)$ integrable systems”, Plasma Theory and Nonlinear and Turbulent Processes in Physics (Kiev, 1987), v. 1, World Sci., Singapore, 1988, 116–134 | MR | Zbl

[10] Zakharov V. E., Shabat A. B., “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya, I”, Funkts. anal. i ego pril., 8:3 (1974), 43–53 | MR | Zbl

[11] Pogrebkov A. K., “On time evolutions associated with the nonstationary Schrödinger equation”, L. D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. (2), 201, Amer. Math. Soc., Providence, RI, 2000, 239–255 | MR | Zbl

[12] Hirota R., “Nonlinear partial difference equations. II. Discrete time Toda equation”, J. Phys. Soc. Japan, 43 (1977), 2074–2078 | DOI | MR

[13] Hirota R., “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50 (1981), 3785–3791 | DOI | MR

[14] Zabrodin A., A survey of Hirota's difference equations, 1997, arXiv: solv-int/9704001 | MR

[15] Krichever I., Wiegmann P., Zabrodin A., Elliptic solutions to difference non-linear equations and related many-body problems, 1997, arXiv: hep-th/9704090 | MR

[16] Bogdanov L. V., Konopelchenko B. G., Generalized $KP$ hierarchy: Möbius symmetry, symmetry constraints and Calogero–Moser system, 1999, arXiv: solv-int/9912005 | MR

[17] Zabrodin A., Bäcklund transformations and Hirota equation and supersymmetric Bethe ansatz, 2007, arXiv: 0705.4006v1

[18] Manakov S. V., “The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev–Petviashvili equation”, Physica D, 3 (1981), 420–427 | DOI | MR