Extended quadratic algebra and a~model of the equivariant cohomology ring of flag varieties
Algebra i analiz, Tome 22 (2010) no. 3, pp. 155-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a root system of type $A$, we introduce and study a certain extension of the quadratic algebra invented by S. Fomin and the first author, to construct a model for the equivariant cohomology ring of the corresponding flag variety. As an application, a generalization of the equivariant Pieri rule for double Schubert polynomials is described. For a general finite Coxeter system, an extension of the corresponding Nichols–Woronowicz algebra is constructed. In the case of finite crystallographic Coxeter systems, a construction is presented of an extended Nichols–Woronowicz algebra model for the equivariant cohomology of the corresponding flag variety.
Keywords: root system of type $A$, equivariant Pieri rule, Nichols–Woronowicz algebra.
@article{AA_2010_22_3_a7,
     author = {A. N. Kirillov and T. Maeno},
     title = {Extended quadratic algebra and a~model of the equivariant cohomology ring of flag varieties},
     journal = {Algebra i analiz},
     pages = {155--176},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a7/}
}
TY  - JOUR
AU  - A. N. Kirillov
AU  - T. Maeno
TI  - Extended quadratic algebra and a~model of the equivariant cohomology ring of flag varieties
JO  - Algebra i analiz
PY  - 2010
SP  - 155
EP  - 176
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a7/
LA  - en
ID  - AA_2010_22_3_a7
ER  - 
%0 Journal Article
%A A. N. Kirillov
%A T. Maeno
%T Extended quadratic algebra and a~model of the equivariant cohomology ring of flag varieties
%J Algebra i analiz
%D 2010
%P 155-176
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_3_a7/
%G en
%F AA_2010_22_3_a7
A. N. Kirillov; T. Maeno. Extended quadratic algebra and a~model of the equivariant cohomology ring of flag varieties. Algebra i analiz, Tome 22 (2010) no. 3, pp. 155-176. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a7/

[1] Andruskiewitsch N., Schneider H.-J., “Pointed Hopf algebras”, New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002, 1–68 | MR | Zbl

[2] Bazlov Y., “Nichols–Woronowicz algebra model for Schubert calculus on Coxeter groups”, J. Algebra, 297:2 (2006), 372–399 | DOI | MR | Zbl

[3] Ciocan-Fontanine I., Fulton W., Quantum double Schubert polynomials, Report No 6, Inst. Mittag-Leffler, 1996–1997

[4] Dunkl C., “Harmonic polynomials and peak sets of reflection groups”, Geom. Dedicata, 32 (1989), 157–171 | DOI | MR | Zbl

[5] Fomin S., Gelfand S., Postnikov A., “Quantum Schubert polynomials”, J. Amer. Math. Soc., 10 (1997), 565–596 | DOI | MR | Zbl

[6] Fomin S., Kirillov A. N., “Quadratic algebras, Dunkl elements, and Schubert calculus”, Advances in Geometry, Progr. Math., 172, eds. J.-L. Brylinski, R. Brylinski, V. Nistor, B. Tsygan, P. Xu, Birkhäuser Boston, Boston, MA, 1999, 147–182 | MR | Zbl

[7] Kirillov A. N., On some quadratic algebras, II, Preprint

[8] Kirillov A. N., Maeno T., “Quantum double Schubert polynomials, quantum Schubert polynomials and Vafa–Intriligator formula”, Discrete Math., 217 (2000), 191–223 | DOI | MR | Zbl

[9] Kirillov A. N., Maeno T., “Noncommutative algebras related with Schubert calculus on Coxeter groups”, European J. Combin., 25 (2004), 1301–1325 | DOI | MR | Zbl

[10] Lascoux A., Schützenberger M.-P., “Polynômes de Schubert”, C. R. Acad. Sci. Paris Ser. I Math., 294 (1982), 447–450 | MR | Zbl

[11] Majid S., “Free braided differential calculus, braided binomial theorem, and the braided exponential map”, J. Math. Phys., 34 (1993), 4843–4856 | DOI | MR | Zbl

[12] Manivel L., Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monogr., 6, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[13] Postnikov A., “On a quantum version of Pieri's formula”, Advances in Geometry, Progr. Math., 172, eds. J.-L. Brylinski, R. Brylinski, V. Nistor, B. Tsygan, P. Xu, Birkhäuser Boston, Boston, MA, 1999, 371–383 | MR | Zbl

[14] Robinson S., “A Pieri type formula for $H^*_T(\operatorname{SL}_n(\mathbf C)/\mathbf B)$”, J. Algebra, 249 (2002), 38–58 | DOI | MR | Zbl

[15] Veigneau S., Calcul symbolique et calcul distribué en combinatoire algébrique, Univ. Marne-la-Valée, Thèse, 1996

[16] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl