Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_3_a7, author = {A. N. Kirillov and T. Maeno}, title = {Extended quadratic algebra and a~model of the equivariant cohomology ring of flag varieties}, journal = {Algebra i analiz}, pages = {155--176}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a7/} }
TY - JOUR AU - A. N. Kirillov AU - T. Maeno TI - Extended quadratic algebra and a~model of the equivariant cohomology ring of flag varieties JO - Algebra i analiz PY - 2010 SP - 155 EP - 176 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a7/ LA - en ID - AA_2010_22_3_a7 ER -
A. N. Kirillov; T. Maeno. Extended quadratic algebra and a~model of the equivariant cohomology ring of flag varieties. Algebra i analiz, Tome 22 (2010) no. 3, pp. 155-176. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a7/
[1] Andruskiewitsch N., Schneider H.-J., “Pointed Hopf algebras”, New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002, 1–68 | MR | Zbl
[2] Bazlov Y., “Nichols–Woronowicz algebra model for Schubert calculus on Coxeter groups”, J. Algebra, 297:2 (2006), 372–399 | DOI | MR | Zbl
[3] Ciocan-Fontanine I., Fulton W., Quantum double Schubert polynomials, Report No 6, Inst. Mittag-Leffler, 1996–1997
[4] Dunkl C., “Harmonic polynomials and peak sets of reflection groups”, Geom. Dedicata, 32 (1989), 157–171 | DOI | MR | Zbl
[5] Fomin S., Gelfand S., Postnikov A., “Quantum Schubert polynomials”, J. Amer. Math. Soc., 10 (1997), 565–596 | DOI | MR | Zbl
[6] Fomin S., Kirillov A. N., “Quadratic algebras, Dunkl elements, and Schubert calculus”, Advances in Geometry, Progr. Math., 172, eds. J.-L. Brylinski, R. Brylinski, V. Nistor, B. Tsygan, P. Xu, Birkhäuser Boston, Boston, MA, 1999, 147–182 | MR | Zbl
[7] Kirillov A. N., On some quadratic algebras, II, Preprint
[8] Kirillov A. N., Maeno T., “Quantum double Schubert polynomials, quantum Schubert polynomials and Vafa–Intriligator formula”, Discrete Math., 217 (2000), 191–223 | DOI | MR | Zbl
[9] Kirillov A. N., Maeno T., “Noncommutative algebras related with Schubert calculus on Coxeter groups”, European J. Combin., 25 (2004), 1301–1325 | DOI | MR | Zbl
[10] Lascoux A., Schützenberger M.-P., “Polynômes de Schubert”, C. R. Acad. Sci. Paris Ser. I Math., 294 (1982), 447–450 | MR | Zbl
[11] Majid S., “Free braided differential calculus, braided binomial theorem, and the braided exponential map”, J. Math. Phys., 34 (1993), 4843–4856 | DOI | MR | Zbl
[12] Manivel L., Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monogr., 6, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[13] Postnikov A., “On a quantum version of Pieri's formula”, Advances in Geometry, Progr. Math., 172, eds. J.-L. Brylinski, R. Brylinski, V. Nistor, B. Tsygan, P. Xu, Birkhäuser Boston, Boston, MA, 1999, 371–383 | MR | Zbl
[14] Robinson S., “A Pieri type formula for $H^*_T(\operatorname{SL}_n(\mathbf C)/\mathbf B)$”, J. Algebra, 249 (2002), 38–58 | DOI | MR | Zbl
[15] Veigneau S., Calcul symbolique et calcul distribué en combinatoire algébrique, Univ. Marne-la-Valée, Thèse, 1996
[16] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl