Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_3_a6, author = {A. P. Isaev and A. I. Molev}, title = {Fusion procedure for the {Brauer} algebra}, journal = {Algebra i analiz}, pages = {142--154}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a6/} }
A. P. Isaev; A. I. Molev. Fusion procedure for the Brauer algebra. Algebra i analiz, Tome 22 (2010) no. 3, pp. 142-154. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a6/
[1] Barcelo H., Ram A., “Combinatorial representation theory”, New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–1997), Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999, 23–90 | MR | Zbl
[2] Beliakova A., Blanchet C., “Skein construction of idempotents in Birman–Murakami–Wenzl algebras”, Math. Ann., 321 (2001), 347–373 | DOI | MR | Zbl
[3] Birman J., Wenzl H., “Braids, link polynomials and a new algebra”, Trans. Amer. Math. Soc., 313 (1989), 249–273 | MR | Zbl
[4] Brauer R., “On algebras which are connected with the semisimple continuous groups”, Ann. of Math. (2), 38 (1937), 857–872 | DOI | MR | Zbl
[5] Cherednik I. V., “O spetsialnykh bazisakh neprivodimykh predstavlenii vyrozhdennoi affinnoi algebry Gekke”, Funkts. anal. i ego pril., 20:1 (1986), 87–89 | MR
[6] Isaev A. P., Quantum groups and Yang–Baxter equations, Preprint MPIM (Bonn), MPI 2004-132, 2004 http://www.mpim-bonn.mpg.de/html/preprints/preprints.html
[7] Isaev A. P., Molev A. I., Os'kin A. F., “On the idempotents of Hecke algebras”, Lett. Math. Phys., 85 (2008), 79–90 | DOI | MR | Zbl
[8] Yutsis A. A., “Ob operatorakh Yunga simmetricheskikh grupp”, Litovsk. fiz. sb., 6:2 (1966), 163–180
[9] Yutsis A. A., “Faktorizatsiya proektsionnykh operatorov Yunga simmetricheskikh grupp”, Litovsk. fiz. sb., 11:1 (1971), 1–10
[10] Kulish P. P., Reshetikhin N. Yu., Sklyanin E. K., “Yang–Baxter equation and representation theory”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl
[11] Leduc R., Ram A., “A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: the Brauer, Birman–Wenzl and type A Iwahori–Hecke algebras”, Adv. Math., 125 (1997), 1–94 | DOI | MR | Zbl
[12] Mathas A., “Seminormal forms and Gram determinants for cellular algebras”, J. Reine Angew. Math., 619 (200), 141–173 | MR | Zbl
[13] Molev A. I., “On the fusion procedure for the symmetric group”, Rep. Math. Phys., 61 (2008), 181–188 | DOI | MR | Zbl
[14] Molev A., Yangians and classical Lie algebras, Math. Surveys Monogr., 143, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl
[15] Murphy G. E., “The idempotents of the symmetric group and Nakayama's conjecture”, J. Algebra, 81 (1983), 258–265 | DOI | MR | Zbl
[16] Nazarov M., “Yangians and Capelli identities”, Kirillov's Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2, 181, ed. G. I. Olshanski, Amer. Math. Soc., Providence, RI, 1998, 139–163 | MR | Zbl
[17] Nazarov M., “Young's orthogonal form for Brauer's centralizer algebra”, J. Algebra, 182 (1996), 664–693 | DOI | MR | Zbl
[18] Nazarov M., “Representations of twisted Yangians associated with skew Young diagrams”, Selecta Math. (N.S.), 10 (2004), 71–129 | DOI | MR | Zbl
[19] Reshetikhin N. Yu., Takhtadzhyan L. A., Faddeev L. D., “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR | Zbl
[20] Rui H., “A criterion on the semisimple Brauer algebras”, J. Combin. Theory Ser. A, 111 (2005), 78–88 | DOI | MR | Zbl
[21] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi, I”, Teor. i mat. fiz., 40:2 (1979), 194–220 | MR
[22] Wenzl H., “On the structure of Brauer's centralizer algebras”, Ann. of Math. (2), 128 (1988), 173–193 | DOI | MR | Zbl
[23] Zamolodchikov A. B., Zamolodchikov Al. B., “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Phys., 120 (1979), 253–291 | DOI | MR