Quantum Toda chains intertwined
Algebra i analiz, Tome 22 (2010) no. 3, pp. 107-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit construction of integral operators intertwining various quantum Toda chains is conjectured. Compositions of the intertwining operators provide recursive and $\mathcal Q$-operators for quantum Toda chains. In particular the authors earlier results on Toda chains corresponding to classical Lie algebra are extended to the generic $BC_n$- and Inozemtsev–Toda chains. Also, an explicit form of $\mathcal Q$-operators is conjectured for the closed Toda chains corresponding to the Lie algebras $B_\infty$, $C_\infty$, $D_\infty$, the affine Lie algebras $B^{(1)}_n$, $C^{(1)}_n$, $D^{(1)}_n$, $D^{(2)}_n$, $A^{(2)}_{2n-1}$, $A^{(2)}_{2n}$, and the affine analogs of $BC_n$- and Inozemtsev–Toda chains.
Keywords: quantum Toda Hamiltonians, elementary intertwining operator, recursive operator, quantization Pasquier–Gaudin integral $Q$-operator.
@article{AA_2010_22_3_a5,
     author = {A. Gerasimov and D. Lebedev and S. Oblezin},
     title = {Quantum {Toda} chains intertwined},
     journal = {Algebra i analiz},
     pages = {107--141},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a5/}
}
TY  - JOUR
AU  - A. Gerasimov
AU  - D. Lebedev
AU  - S. Oblezin
TI  - Quantum Toda chains intertwined
JO  - Algebra i analiz
PY  - 2010
SP  - 107
EP  - 141
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a5/
LA  - en
ID  - AA_2010_22_3_a5
ER  - 
%0 Journal Article
%A A. Gerasimov
%A D. Lebedev
%A S. Oblezin
%T Quantum Toda chains intertwined
%J Algebra i analiz
%D 2010
%P 107-141
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_3_a5/
%G en
%F AA_2010_22_3_a5
A. Gerasimov; D. Lebedev; S. Oblezin. Quantum Toda chains intertwined. Algebra i analiz, Tome 22 (2010) no. 3, pp. 107-141. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a5/

[1] Faddeev L. D., “How the algebraic Bethe ansatz works for integrable models”, Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 149–219 | MR | Zbl

[2] Gerasimov A., Kharchev S., Lebedev D., Oblezin S., “On a Gauss–Givental representation for quantum Toda chain wave function”, Int. Math. Res. Not., 2006, Art. ID 96489, arXiv: math.RT/0505310 | MR

[3] Gerasimov A., Lebedev D., Oblezin S., Givental integral representation for classical groups, arXiv: math.RT/0608152

[4] Gerasimov A., Lebedev D., Oblezin S., New integral representations of Whittaker functions for classical groups, arXiv: 0705.2886[math.RT]

[5] Gerasimov A., Lebedev D., Oblezin S., “Baxter operator and Archimedean Hecke algebra”, Comm. Math. Phys., 284 (2008), 867–896, arXiv: 0706.3476[math.RT] | DOI | MR | Zbl

[6] Givental A., “Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture”, Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser. 2, 180, Amer. Math. Soc., Providence, RI, 1997, 103–115, arXiv: alg-geom/9612001 | MR | Zbl

[7] Hashizume M., “Whittaker functions on semi-simple Lie groups”, Hiroshima Math. J., 12 (1982), 259–293 | MR | Zbl

[8] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., 80, Acad. Press, Inc., New York–London, 1978 | MR | Zbl

[9] Inozemtsev V., “The finite Toda lattices”, Comm. Math. Phys., 121 (1989), 629–638 | DOI | MR | Zbl

[10] Kac V., Infinite-dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[11] Kuznetsov V., Sklyanin E. K., “Bäcklund transformation for the BC-type Toda lattice”, SIGMA Symmetry Integrability Geom. Methods Appl., 3, Vadim Kuznetsov Memorial Issue on Integrable Systems and Related Topics (2007), 080, arXiv: 0707.1950 | MR | Zbl

[12] Pasquier V., Gaudin M., “The periodic Toda chain and a matrix generalization of the Bessel function recursion relations”, J. Phys. A, 25 (1992), 5243–5252 | DOI | MR | Zbl

[13] Reiman A. G., Semenov-Tyan-Shanskii M. A., Integriruemye sistemy. Teoretiko-gruppovoi podkhod, In-t kompyuter. issled., M.–Izhevsk, 2003

[14] Sklyanin E. K., “Boundary conditions for integrable quantum systems”, J. Phys. A, 21 (1988), 2375–2389 | DOI | MR | Zbl

[15] Semenov-Tyan-Shanskii M. A., “Kvantovanie nezamknutykh tsepochek Tody”, Dinamicheskie sistemy – 7, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravl., 16, VINITI, M., 1987, 194–226 | MR | Zbl

[16] Toda M., Theory of nonlinear lattices, Springer Ser. in Solid-State Sci., 20, Springer-Verlag, Berlin–New York, 1981 | MR | Zbl