Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_3_a4, author = {A. G. Bytsko}, title = {Non-Hermitian spin chains with inhomogeneous coupling}, journal = {Algebra i analiz}, pages = {80--106}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a4/} }
A. G. Bytsko. Non-Hermitian spin chains with inhomogeneous coupling. Algebra i analiz, Tome 22 (2010) no. 3, pp. 80-106. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a4/
[1] Assis P. E. G., Fring A., “Metrics and isospectral partners for the most generic cubic PT-symmetric non-Hermitian Hamiltonian”, J. Phys. A, 41 (2008), 244001, 18 pp. | MR | Zbl
[2] Batchelor M. T., Barber M. N., “Spin-s quantum chains and Temperley–Lieb algebras”, J. Phys. A, 23 (1990), L15–L21 | DOI | MR | Zbl
[3] Bender C. M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having PT symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246 | DOI | MR | Zbl
[4] Bender C. M., “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018 | DOI | MR
[5] Bender C. M., Brody D. C., Jones H. F., “Complex extension of quantum mechanics”, Phys. Rev. Lett., 89 (2002), 270401, 4 pp. | DOI | MR
[6] Bessis D., Zinn-Justin J., unpublished, 1993
[7] Bytsko A. G., “On integrable Hamiltonians for higher spin $XXZ$ chain”, J. Math. Phys., 44 (2003), 3698–3717 | MR | Zbl
[8] Bytsko A. G., “O $U_q(sl_2)$-invariantnykh R-matritsakh dlya starshikh spinov”, Algebra i analiz, 17:3 (2005), 24–46 | MR | Zbl
[9] Cardy J. L., Sugar R. L., “Reggeon field theory on a lattice, I”, Phys. Rev. D, 12 (1975), 2514–2522 | DOI
[10] Castro-Alvaredo O. A., Fring A., “A spin chain model with non-Hermitian interaction: The Ising quantum spin chain in an imaginary field”, J. Phys. A, 42 (2009), 465211, 29 pp. | MR | Zbl
[11] Dieudonné J., “Quasi-Hermitian operators”, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Acad. Press, Jerusalem, 1961, 115–122 | MR | Zbl
[12] Drinfeld V. G., “Kvantovye gruppy”, Zap. nauch. semin. LOMI, 155, 1986, 18–49 | MR
[13] Drinfeld V. G., “O pochti kokommutativnykh algebrakh Khopfa”, Algebra i analiz, 1:2 (1989), 30–46 | MR | Zbl
[14] von Gehlen G., “Critical and off critical conformal analysis of the Ising quantum chain in an imaginary field”, J. Phys. A, 24 (1991), 5371–5400 | DOI
[15] Heuser H., “Über Eigenwerte und Eigenlösungen symmetrisierbarer finiter Operatoren”, Arch. Math., 10 (1959), 12–20 | DOI | MR | Zbl
[16] Hollowood T., “Solitons in affine Toda field theories”, Nuclear Phys. B, 384 (1992), 523–540 | DOI | MR
[17] Izergin A. G., Korepin V. E., “The inverse scattering method approach to the quantum Shabat–Mikhailov model”, Comm. Math. Phys., 79 (1981), 303–316 | DOI | MR
[18] Kirillov A. N., Reshetikhin N. Yu., “Representations of the algebra $U_q(sl(2))$, $q$-orthogonal polynomials and invariants of links”, Infinite-Dimensional Lie Algebras and Groups (Luminy–Marseille, 1988), Adv. Ser. Math. Phys., 7, World Sci. Publ., Teaneck, NJ, 1989, 285–339 | MR
[19] Korff C., Weston R. A., “PT symmetry on the lattice: The quantum group invariant $XXZ$ spin chain”, J. Phys. A, 40 (2007), 8845–8872 | DOI | MR | Zbl
[20] Kulish P. P., “On spin systems related to the Temperley–Lieb algebra”, J. Phys. A, 36 (2003), L489–L493 | DOI | MR | Zbl
[21] Kulish P. P., Stolin A. A., “Deformed Yangians and integrable models”, Czechoslovak. J. Phys., 47 (1997), 1207–1212 | DOI | MR | Zbl
[22] Mostafazadeh A., “Pseudo-Hermiticity versus $PT$ symmetry. III. Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries”, J. Math. Phys., 43 (2002), 3944–3951 | MR | Zbl
[23] Mostafazadeh A., Pseudo-Hermitian quantum mechanics, arXiv: 0810.5643[hep-th]
[24] Reid W. T., “Symmetrizable completely continuous linear transformations in Hilbert space”, Duke Math. J., 18 (1951), 41–56 | DOI | MR | Zbl
[25] Scholtz F. G., Geyer H. B., Hahne F. J. W., “Quasi-Hermitian operators in quantum mechanics and the variational principle”, Ann. Physics, 213 (1992), 74–101 | DOI | MR | Zbl
[26] Silberstein J. P. O., “Symmetrisable operators”, J. Austral. Math. Soc., 2 (1962), 381–402 | DOI | MR | Zbl
[27] Silberstein J. P. O., “Symmetrisable operators. II. Operators in a Hilbert space $H$”, J. Austral. Math. Soc., 4 (1964), 15–30 | DOI | MR | Zbl
[28] Varchenko A. N., Tarasov V. O., “Dzheksonovskie integralnye predstavleniya dlya reshenii kvantovogo uravneniya Knizhnika–Zamolodchikova”, Algebra i analiz, 6:2 (1994), 90–137 | MR | Zbl
[29] Wigner E. P., “Normal form of antiunitary operators”, J. Math. Phys., 1 (1960), 409–413 | DOI | MR | Zbl
[30] Zaanen A. C., “Über vollstetige symmetrische und symmetrisierbare Operatoren”, Nieuw Arch. Wiskunde (2), 22 (1943), 57–80 | MR | Zbl
[31] Znojil M., Geyer H. B., “Construction of a unique metric in quasi-Hermitian quantum mechanics: nonexistence of the charge operator in a $2\times2$ matrix model”, Phys. Lett. B, 640 (2006), 52–56 | DOI | MR