Non-Hermitian spin chains with inhomogeneous coupling
Algebra i analiz, Tome 22 (2010) no. 3, pp. 80-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

An open $U_q(sl_2)$-invariant spin chain of spin $S$ and length $N$ with inhomogeneous coupling is investigated as an example of a non-Hermitian (quasi-Hermitian) model. For several particular cases of such a chain, the ranges of the deformation parameter $\gamma$ are determined for which the spectrum of the model is real. For a certain range of $\gamma$, a universal metric operator is constructed, and thus, the quasi-Hermitian nature of the model is established. This universal metric operator is nondynamical, its structure is determined only by the symmetry of the model. The results apply, in particular, to all known homogeneous $U_q(sl_2)$-invariant integrable spin chains with nearest-neighbor interaction. In addition, the most general form of a metric operator for a quasi-Hermitian operator in finite-dimensional spaces is discussed.
Keywords: quasi-Hermitian Hamiltonians, quantum algebras, spin chains.
@article{AA_2010_22_3_a4,
     author = {A. G. Bytsko},
     title = {Non-Hermitian spin chains with inhomogeneous coupling},
     journal = {Algebra i analiz},
     pages = {80--106},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a4/}
}
TY  - JOUR
AU  - A. G. Bytsko
TI  - Non-Hermitian spin chains with inhomogeneous coupling
JO  - Algebra i analiz
PY  - 2010
SP  - 80
EP  - 106
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a4/
LA  - ru
ID  - AA_2010_22_3_a4
ER  - 
%0 Journal Article
%A A. G. Bytsko
%T Non-Hermitian spin chains with inhomogeneous coupling
%J Algebra i analiz
%D 2010
%P 80-106
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_3_a4/
%G ru
%F AA_2010_22_3_a4
A. G. Bytsko. Non-Hermitian spin chains with inhomogeneous coupling. Algebra i analiz, Tome 22 (2010) no. 3, pp. 80-106. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a4/

[1] Assis P. E. G., Fring A., “Metrics and isospectral partners for the most generic cubic PT-symmetric non-Hermitian Hamiltonian”, J. Phys. A, 41 (2008), 244001, 18 pp. | MR | Zbl

[2] Batchelor M. T., Barber M. N., “Spin-s quantum chains and Temperley–Lieb algebras”, J. Phys. A, 23 (1990), L15–L21 | DOI | MR | Zbl

[3] Bender C. M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having PT symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246 | DOI | MR | Zbl

[4] Bender C. M., “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018 | DOI | MR

[5] Bender C. M., Brody D. C., Jones H. F., “Complex extension of quantum mechanics”, Phys. Rev. Lett., 89 (2002), 270401, 4 pp. | DOI | MR

[6] Bessis D., Zinn-Justin J., unpublished, 1993

[7] Bytsko A. G., “On integrable Hamiltonians for higher spin $XXZ$ chain”, J. Math. Phys., 44 (2003), 3698–3717 | MR | Zbl

[8] Bytsko A. G., “O $U_q(sl_2)$-invariantnykh R-matritsakh dlya starshikh spinov”, Algebra i analiz, 17:3 (2005), 24–46 | MR | Zbl

[9] Cardy J. L., Sugar R. L., “Reggeon field theory on a lattice, I”, Phys. Rev. D, 12 (1975), 2514–2522 | DOI

[10] Castro-Alvaredo O. A., Fring A., “A spin chain model with non-Hermitian interaction: The Ising quantum spin chain in an imaginary field”, J. Phys. A, 42 (2009), 465211, 29 pp. | MR | Zbl

[11] Dieudonné J., “Quasi-Hermitian operators”, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Acad. Press, Jerusalem, 1961, 115–122 | MR | Zbl

[12] Drinfeld V. G., “Kvantovye gruppy”, Zap. nauch. semin. LOMI, 155, 1986, 18–49 | MR

[13] Drinfeld V. G., “O pochti kokommutativnykh algebrakh Khopfa”, Algebra i analiz, 1:2 (1989), 30–46 | MR | Zbl

[14] von Gehlen G., “Critical and off critical conformal analysis of the Ising quantum chain in an imaginary field”, J. Phys. A, 24 (1991), 5371–5400 | DOI

[15] Heuser H., “Über Eigenwerte und Eigenlösungen symmetrisierbarer finiter Operatoren”, Arch. Math., 10 (1959), 12–20 | DOI | MR | Zbl

[16] Hollowood T., “Solitons in affine Toda field theories”, Nuclear Phys. B, 384 (1992), 523–540 | DOI | MR

[17] Izergin A. G., Korepin V. E., “The inverse scattering method approach to the quantum Shabat–Mikhailov model”, Comm. Math. Phys., 79 (1981), 303–316 | DOI | MR

[18] Kirillov A. N., Reshetikhin N. Yu., “Representations of the algebra $U_q(sl(2))$, $q$-orthogonal polynomials and invariants of links”, Infinite-Dimensional Lie Algebras and Groups (Luminy–Marseille, 1988), Adv. Ser. Math. Phys., 7, World Sci. Publ., Teaneck, NJ, 1989, 285–339 | MR

[19] Korff C., Weston R. A., “PT symmetry on the lattice: The quantum group invariant $XXZ$ spin chain”, J. Phys. A, 40 (2007), 8845–8872 | DOI | MR | Zbl

[20] Kulish P. P., “On spin systems related to the Temperley–Lieb algebra”, J. Phys. A, 36 (2003), L489–L493 | DOI | MR | Zbl

[21] Kulish P. P., Stolin A. A., “Deformed Yangians and integrable models”, Czechoslovak. J. Phys., 47 (1997), 1207–1212 | DOI | MR | Zbl

[22] Mostafazadeh A., “Pseudo-Hermiticity versus $PT$ symmetry. III. Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries”, J. Math. Phys., 43 (2002), 3944–3951 | MR | Zbl

[23] Mostafazadeh A., Pseudo-Hermitian quantum mechanics, arXiv: 0810.5643[hep-th]

[24] Reid W. T., “Symmetrizable completely continuous linear transformations in Hilbert space”, Duke Math. J., 18 (1951), 41–56 | DOI | MR | Zbl

[25] Scholtz F. G., Geyer H. B., Hahne F. J. W., “Quasi-Hermitian operators in quantum mechanics and the variational principle”, Ann. Physics, 213 (1992), 74–101 | DOI | MR | Zbl

[26] Silberstein J. P. O., “Symmetrisable operators”, J. Austral. Math. Soc., 2 (1962), 381–402 | DOI | MR | Zbl

[27] Silberstein J. P. O., “Symmetrisable operators. II. Operators in a Hilbert space $H$”, J. Austral. Math. Soc., 4 (1964), 15–30 | DOI | MR | Zbl

[28] Varchenko A. N., Tarasov V. O., “Dzheksonovskie integralnye predstavleniya dlya reshenii kvantovogo uravneniya Knizhnika–Zamolodchikova”, Algebra i analiz, 6:2 (1994), 90–137 | MR | Zbl

[29] Wigner E. P., “Normal form of antiunitary operators”, J. Math. Phys., 1 (1960), 409–413 | DOI | MR | Zbl

[30] Zaanen A. C., “Über vollstetige symmetrische und symmetrisierbare Operatoren”, Nieuw Arch. Wiskunde (2), 22 (1943), 57–80 | MR | Zbl

[31] Znojil M., Geyer H. B., “Construction of a unique metric in quasi-Hermitian quantum mechanics: nonexistence of the charge operator in a $2\times2$ matrix model”, Phys. Lett. B, 640 (2006), 52–56 | DOI | MR