The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers
Algebra i analiz, Tome 22 (2010) no. 3, pp. 32-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $XXZ$ Heisenberg chain is considered for two specific limits of the anisotropy parameter: $\Delta\to0$ and $\Delta\to-\infty$. The corresponding wave functions are expressed in terms of symmetric Schur functions. Certain expectation values and thermal correlation functions of the ferromagnetic string operators are calculated over the basis of $N$-particle Bethe states. The thermal correlator of the ferromagnetic string is expressed through the generating function of the lattice paths of random walks of vicious walkers. A relationship between the expectation values obtained and the generating functions of strict plane partitions in a box is discussed. An asymptotic estimate of the thermal correlator of the ferromagnetic string is obtained in the zero temperature limit. It is shown that its amplitude is related to the number of plane partitions.
Keywords: $XXZ$ Heisenberg chain, Schur functions, random walks, plane partitions.
@article{AA_2010_22_3_a2,
     author = {N. M. Bogoliubov and K. Malyshev},
     title = {The correlation functions of the $XXZ$ {Heisenberg} chain in the case of zero or infinite anisotropy, and random walks of vicious walkers},
     journal = {Algebra i analiz},
     pages = {32--59},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a2/}
}
TY  - JOUR
AU  - N. M. Bogoliubov
AU  - K. Malyshev
TI  - The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers
JO  - Algebra i analiz
PY  - 2010
SP  - 32
EP  - 59
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a2/
LA  - ru
ID  - AA_2010_22_3_a2
ER  - 
%0 Journal Article
%A N. M. Bogoliubov
%A K. Malyshev
%T The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers
%J Algebra i analiz
%D 2010
%P 32-59
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_3_a2/
%G ru
%F AA_2010_22_3_a2
N. M. Bogoliubov; K. Malyshev. The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers. Algebra i analiz, Tome 22 (2010) no. 3, pp. 32-59. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a2/

[1] Heisenberg W., “Zur Theorie des Ferromagnetismus”, Zeitschrift für Physik, 49:9–10 (1928), 619–636 | DOI | Zbl

[2] Bethe H., “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen Atomkette”, Z. Phys., 71:3–4 (1931), 205–226 | Zbl

[3] Yang C. N., Yang C. P., “One-dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe's hypothesis for ground state in a finite system”, Phys. Rev., 150:1 (1966), 321–327 | DOI | MR

[4] Yang C. N., Yang C. P., “One-dimensional chain of anisotropic spin-spin interactions. II. Properties of the ground state energy per lattice site for an infinite system”, Phys. Rev., 150:1 (1966), 327–339 | DOI | MR

[5] Yang C. N., Yang C. P., “One-dimensional chain of anisotropic spin-spin interactions. III. Applications”, Phys. Rev., 151:1 (1966), 258–264 | DOI | MR

[6] Lieb E. H., Wu F. Y., “Two dimensional ferroelectric models”, Phase Transitions and Critical Phenomena, v. 1, eds. C. Domb, M. Green, Acad. Press, London, 1972, 331–490

[7] Baxter R. J., Exactly solved models in statistical mechanics, Acad. Press, London, 1982 | MR | Zbl

[8] Gaudin M., La fonction d'onde de Bethe, Masson, Paris, 1983 | MR | Zbl

[9] Faddeev L. D., “Quantum completely integrable models of field theory”, Sov. Sci. Rev. Sect. C Math. Phys. Rev., 1, 1980, 107–155 ; 40 Years in Mathematical Physics, World Sci. Ser. in 20th Century Math., 2, World Sci., Singapore, 1995 | Zbl | MR | Zbl

[10] Kulish P. P., Sklyanin E. K., “Quantum spectral transform method. Recent developments”, Lecture Notes in Phys., 151, Springer, Berlin etc., 1982, 61–119 | MR

[11] Faddeev L. D., Takhtadzhyan L. A., “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, Uspekhi mat. nauk, 34:5 (1979), 13–63 | MR

[12] Faddeev L. D., Takhtajan L. A., “What is the spin of a spin wave?”, Phys. Lett. A, 85:6–7 (1981), 375–377 | DOI | MR

[13] Korepin V. E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl

[14] Izergin A. G., Korepin V. E., “Correlation functions for the Heisenberg $XXZ$-antiferromagnet”, Comm. Math. Phys., 99:2 (1985), 271–302 | DOI | MR | Zbl

[15] Kulish P. P., Smirnov F. A., “Anisotropic Heisenberg ferromagnet with a ground of the domain wall type”, J. Phys. C, 18:5 (1985), 1037–1048 | DOI

[16] Bogolyubov N. M., Izergin A. G., Korepin V. E., Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR | Zbl

[17] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[18] Eßler F. H. L., Frahm H., Izergin A. G., Korepin V. E., “Determinant representation for correlation functions of spin-1/2 $XXX$ and $XXZ$ Heisenberg magnets”, Comm. Math. Phys., 174:1 (1995), 191–214 | DOI | MR

[19] Kitanine N., Maillet J. M., Slavnov N., Terras V., “Spin-spin correlation functions of the $XXZ$-$\frac12$ Heisenberg chain in a magnetic field”, Nuclear Phys. B, 641:3 (2002), 487–518 | DOI | MR | Zbl

[20] Kitanine N., Maillet J. M., Slavnov N., Terras V., “Correlation functions of the $XXZ$ spin-$\frac12$ Heisenberg chain at the free fermion point from their multiple integral representations”, Nuclear Phys. B, 642:3 (2002), 433–455 | DOI | MR | Zbl

[21] Fisher M. E., “Walks, walls, wetting, and melting”, J. Statist. Phys., 34:5–6 (1984), 667–729 | DOI | MR

[22] Forrester P. J., “Exact solution of the lock step model of vicious walkers”, J. Phys. A, 23:7 (1990), 1259–1273 | DOI | MR | Zbl

[23] Nagao T., Forrester P. J., “Vicious random walkers and a discretization of Gaussian random matrix ensembles”, Nuclear Phys. B, 620:3 (2002), 551–565 | DOI | MR | Zbl

[24] Guttmann A. J., Owczarek A. L., Viennot X. G., “Vicious walkers and Young tableaux. I. Without walls”, J. Phys. A, 31:40 (1998), 8123–8135 | DOI | MR | Zbl

[25] Krattenthaler C., Guttmann A. J., Viennot X. G., “Vicious walkers, friendly walkers and Young tableaux. II. With a wall”, J. Phys. A, 33:48 (2000), 8835–8866 | DOI | MR | Zbl

[26] Krattenthaler C., Guttmann A. J., Viennot X. G., “Vicious walkers, friendly walkers, and Young tableaux. III. Between two walls”, J. Statist. Phys., 110:3–6 (2003), 1069–1086 | DOI | MR | Zbl

[27] Katori M., Tanemura H., “Scaling limit of vicious walks and two-matrix model”, Phys. Rev. E, 66:1 (2002), 011105, 12 pp. | DOI | MR

[28] Katori M., Tanemura H., Nagao T., Komatsuda N., “Vicious walks with a wall, noncolliding meanders, and chiral and Bogoliubov–de Gennes random matrices”, Phys. Rev. E, 68:2 (2003), 021112, 16 pp. | DOI | MR

[29] Katori M., Tanemura H., “Nonintersecting paths, noncolliding diffusion processes and representation theory”, Combinatorial Methods in Representation Theory and their Applications, 1438, RIMS Kokyuroku, 2005, 83–102

[30] Bak P., Tang C., Wiesenfeld K., “Self-organized criticality”, Phys. Rev. A, 38:1 (1998), 364–374 | DOI | MR

[31] Huse D., Fisher M., “Commensurate melting, domain walls, and dislocations”, Phys. Rev. B (3), 29:1 (1984), 239–270 | DOI | MR

[32] Essam J. W., Guttmann A. J., “Vicious walkers and directed polymer networks in general dimensions”, Phys. Rev. E (3), 52:6 (1995), 5849–5862 | DOI | MR

[33] Grigorev S. Yu., Priezzhev V. B., “Sluchainoe bluzhdanie annigiliruyuschikh chastits po koltsu”, Teor. i mat. fiz., 146:3 (2006), 488–498 | MR

[34] van de Leur J. W., Orlov A. Yu., Random turn walk on a half line with creation of particles at the origin, arXiv: 0801.0066

[35] Bogolyubov N. M., “$XXO$ tsepochka Geizenberga i sluchainye bluzhdaniya”, Zap. nauch. semin. POMI, 325, 2005, 13–27 | MR | Zbl

[36] Bogolyubov N. M., “Integriruemye modeli dlya zlovrednykh i druzhestvennykh peshekhodov”, Zap. nauch. semin. POMI, 335, 2006, 59–74 | MR | Zbl

[37] Bogoliubov N. M., Malyshev C., “A path-integration approach to the correlators of $XY$ Heisenberg magnet and random walks”, Proceedings of the 9th Intern. Conf. “Path Integrals: New Trends and Perspectives”, World Sci. Publ., Singapore, 2008, 508–513, arXiv: 0810.4816 | MR | Zbl

[38] Bogolyubov N. M., Malyshev K., “Korrelyatsionnye funktsii $XX$-magnetika Geizenberga i sluchainye bluzhdaniya nedruzhestvennykh peshekhodov”, Teor. i mat. fiz., 159:2 (2009), 179–193 | MR

[39] Lieb E., Schultz T., Mattis D., “Two soluble models of an antiferromagnetic chain”, Ann. Physics, 16:3 (1961), 407–466 | DOI | MR | Zbl

[40] Niemeijer Th., “Some exact calculations on a chain of spin $\frac12$, I”, Physica, 36:3 (1967), 377–419 ; “II”, 39:3 (1968), 313–326 | DOI | DOI

[41] Colomo F., Izergin A. G., Korepin V. E., Tognetti V., Correlators in the Heisenberg $XXO$ chain as Fredholm determinants, 169:4 (1992), 243–247 ; Colomo F., Izergin A. G., Korepin V. E., Tognetti V., “Temperature correlation functions in the $XXO$ Heisenberg chain, I”, Теор. и мат. физ., 94:1 (1993), 19–51 | MR | MR

[42] Izergin A. G., Kitanin N. A., Slavnov N. A., “O korrelyatsionnykh funktsiyakh $XY$ modeli”, Zap. nauch. semin. POMI, 224, 1995, 178–191 | Zbl

[43] Izergin A. G., Kapitonov V. S., Kitanin N. A., “Odnovremennye temperaturnye korrelyatory odnomernoi $XY$ tsepochki Geizenberga”, Zap. nauch. semin. POMI, 245, 1997, 173–206 | MR | Zbl

[44] Kapitonov V. S., Pronko A. G., “Raznovremennye korrelyatory lokalnykh spinov v odnomernoi $XY$ tsepochke Geizenberga”, Zap. nauch. semin. POMI, 269, 2000, 219–261 | MR | Zbl

[45] Malyshev K., “Funktsionalnoe integrirovanie s “avtomorfnym” granichnym usloviem i korrelyatory tretikh komponent spinov v $XX$-modeli Geizenberga”, Teor. i mat. fiz., 136:2 (2003), 285–298 | MR | Zbl

[46] Malyshev C., “Functional integration with “automorphic” boundary conditions and correlators of $Z$-components of spins in the $XY$ and $XX$ Heisenberg chains”, New Developments in Mathematical Physics Research, Nova Sci. Publ., Hauppauge, 2004, 85–116, arXiv: math-ph/0405009 | MR

[47] Sachdev S., Quantum phase transitions, Cambridge Univ. Press, Cambridge, 1999 | MR

[48] Colomo F., Izergin A. G., Tognetti V., “Correlation functions in the $XXO$ Heisenberg chain and their relations with spectral shapes”, J. Phys. A, 30:2 (1997), 361–370 | DOI | MR | Zbl

[49] Korepin V., Terilla J., “Thermodynamic interpretation of the quantum error correcting criterion”, Quantum Inf. Process, 1:4 (2002), 225–242 | DOI | MR

[50] Jin B.-Q., Korepin V. E., “Quantum spin chain, Toeplitz determinants and Fisher–Hartwig conjecture”, J. Statist. Phys., 116:1–4 (2004), 79–95 | DOI | MR | Zbl

[51] Alcaraz F. C., Bariev R. Z., “An exactly solvable constrained $XXZ$ chain”, Statistical physics on the eve of the 21st century, Ser. Adv. Statist. Mech., 14, World Sci. Publ., River Edge, NJ, 1999, 412–424 | MR

[52] Abarenkova N. I., Pronko A. G., “Temperaturnyi korrelyator v absolyutno anizotropnom $XXZ$-magnetike Geizenberga”, Teor. i mat. fiz., 131:2 (2002), 288–303 | MR | Zbl

[53] James A. J. A., Goetze W. D., Essler F. H. L., “Finite-temperature dynamical structure factor of the Heisenberg–Ising chain”, Phys. Rev. B, 79:21 (2009), 214408, 20 pp. | DOI

[54] Lu P., Muller G., Karbach M., Quasiparticles in the $XXZ$ model, arXiv: 0909.2728

[55] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Univ. Press, New York, 1995 | MR | Zbl

[56] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[57] Zhelobenko D. P., Shtern A. I., Predstavleniya grupp Li, Nauka, M., 1983 | MR

[58] Mehta M. L., Random matrices, Acad. Press, Inc., Boston, MA, 1991 | MR | Zbl

[59] Okounkov A., “Infinite wedge and random partitions”, Selecta Math. (N.S.), 7:1 (2001), 57–81 | DOI | MR | Zbl

[60] Kuperberg G., “Another proof of the alternative-sign matrix conjecture”, Int. Math. Res. Notices, 1996:3, 139–150 | DOI | MR | Zbl