Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_3_a2, author = {N. M. Bogoliubov and K. Malyshev}, title = {The correlation functions of the $XXZ$ {Heisenberg} chain in the case of zero or infinite anisotropy, and random walks of vicious walkers}, journal = {Algebra i analiz}, pages = {32--59}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a2/} }
TY - JOUR AU - N. M. Bogoliubov AU - K. Malyshev TI - The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers JO - Algebra i analiz PY - 2010 SP - 32 EP - 59 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a2/ LA - ru ID - AA_2010_22_3_a2 ER -
%0 Journal Article %A N. M. Bogoliubov %A K. Malyshev %T The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers %J Algebra i analiz %D 2010 %P 32-59 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2010_22_3_a2/ %G ru %F AA_2010_22_3_a2
N. M. Bogoliubov; K. Malyshev. The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers. Algebra i analiz, Tome 22 (2010) no. 3, pp. 32-59. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a2/
[1] Heisenberg W., “Zur Theorie des Ferromagnetismus”, Zeitschrift für Physik, 49:9–10 (1928), 619–636 | DOI | Zbl
[2] Bethe H., “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen Atomkette”, Z. Phys., 71:3–4 (1931), 205–226 | Zbl
[3] Yang C. N., Yang C. P., “One-dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe's hypothesis for ground state in a finite system”, Phys. Rev., 150:1 (1966), 321–327 | DOI | MR
[4] Yang C. N., Yang C. P., “One-dimensional chain of anisotropic spin-spin interactions. II. Properties of the ground state energy per lattice site for an infinite system”, Phys. Rev., 150:1 (1966), 327–339 | DOI | MR
[5] Yang C. N., Yang C. P., “One-dimensional chain of anisotropic spin-spin interactions. III. Applications”, Phys. Rev., 151:1 (1966), 258–264 | DOI | MR
[6] Lieb E. H., Wu F. Y., “Two dimensional ferroelectric models”, Phase Transitions and Critical Phenomena, v. 1, eds. C. Domb, M. Green, Acad. Press, London, 1972, 331–490
[7] Baxter R. J., Exactly solved models in statistical mechanics, Acad. Press, London, 1982 | MR | Zbl
[8] Gaudin M., La fonction d'onde de Bethe, Masson, Paris, 1983 | MR | Zbl
[9] Faddeev L. D., “Quantum completely integrable models of field theory”, Sov. Sci. Rev. Sect. C Math. Phys. Rev., 1, 1980, 107–155 ; 40 Years in Mathematical Physics, World Sci. Ser. in 20th Century Math., 2, World Sci., Singapore, 1995 | Zbl | MR | Zbl
[10] Kulish P. P., Sklyanin E. K., “Quantum spectral transform method. Recent developments”, Lecture Notes in Phys., 151, Springer, Berlin etc., 1982, 61–119 | MR
[11] Faddeev L. D., Takhtadzhyan L. A., “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, Uspekhi mat. nauk, 34:5 (1979), 13–63 | MR
[12] Faddeev L. D., Takhtajan L. A., “What is the spin of a spin wave?”, Phys. Lett. A, 85:6–7 (1981), 375–377 | DOI | MR
[13] Korepin V. E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl
[14] Izergin A. G., Korepin V. E., “Correlation functions for the Heisenberg $XXZ$-antiferromagnet”, Comm. Math. Phys., 99:2 (1985), 271–302 | DOI | MR | Zbl
[15] Kulish P. P., Smirnov F. A., “Anisotropic Heisenberg ferromagnet with a ground of the domain wall type”, J. Phys. C, 18:5 (1985), 1037–1048 | DOI
[16] Bogolyubov N. M., Izergin A. G., Korepin V. E., Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR | Zbl
[17] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[18] Eßler F. H. L., Frahm H., Izergin A. G., Korepin V. E., “Determinant representation for correlation functions of spin-1/2 $XXX$ and $XXZ$ Heisenberg magnets”, Comm. Math. Phys., 174:1 (1995), 191–214 | DOI | MR
[19] Kitanine N., Maillet J. M., Slavnov N., Terras V., “Spin-spin correlation functions of the $XXZ$-$\frac12$ Heisenberg chain in a magnetic field”, Nuclear Phys. B, 641:3 (2002), 487–518 | DOI | MR | Zbl
[20] Kitanine N., Maillet J. M., Slavnov N., Terras V., “Correlation functions of the $XXZ$ spin-$\frac12$ Heisenberg chain at the free fermion point from their multiple integral representations”, Nuclear Phys. B, 642:3 (2002), 433–455 | DOI | MR | Zbl
[21] Fisher M. E., “Walks, walls, wetting, and melting”, J. Statist. Phys., 34:5–6 (1984), 667–729 | DOI | MR
[22] Forrester P. J., “Exact solution of the lock step model of vicious walkers”, J. Phys. A, 23:7 (1990), 1259–1273 | DOI | MR | Zbl
[23] Nagao T., Forrester P. J., “Vicious random walkers and a discretization of Gaussian random matrix ensembles”, Nuclear Phys. B, 620:3 (2002), 551–565 | DOI | MR | Zbl
[24] Guttmann A. J., Owczarek A. L., Viennot X. G., “Vicious walkers and Young tableaux. I. Without walls”, J. Phys. A, 31:40 (1998), 8123–8135 | DOI | MR | Zbl
[25] Krattenthaler C., Guttmann A. J., Viennot X. G., “Vicious walkers, friendly walkers and Young tableaux. II. With a wall”, J. Phys. A, 33:48 (2000), 8835–8866 | DOI | MR | Zbl
[26] Krattenthaler C., Guttmann A. J., Viennot X. G., “Vicious walkers, friendly walkers, and Young tableaux. III. Between two walls”, J. Statist. Phys., 110:3–6 (2003), 1069–1086 | DOI | MR | Zbl
[27] Katori M., Tanemura H., “Scaling limit of vicious walks and two-matrix model”, Phys. Rev. E, 66:1 (2002), 011105, 12 pp. | DOI | MR
[28] Katori M., Tanemura H., Nagao T., Komatsuda N., “Vicious walks with a wall, noncolliding meanders, and chiral and Bogoliubov–de Gennes random matrices”, Phys. Rev. E, 68:2 (2003), 021112, 16 pp. | DOI | MR
[29] Katori M., Tanemura H., “Nonintersecting paths, noncolliding diffusion processes and representation theory”, Combinatorial Methods in Representation Theory and their Applications, 1438, RIMS Kokyuroku, 2005, 83–102
[30] Bak P., Tang C., Wiesenfeld K., “Self-organized criticality”, Phys. Rev. A, 38:1 (1998), 364–374 | DOI | MR
[31] Huse D., Fisher M., “Commensurate melting, domain walls, and dislocations”, Phys. Rev. B (3), 29:1 (1984), 239–270 | DOI | MR
[32] Essam J. W., Guttmann A. J., “Vicious walkers and directed polymer networks in general dimensions”, Phys. Rev. E (3), 52:6 (1995), 5849–5862 | DOI | MR
[33] Grigorev S. Yu., Priezzhev V. B., “Sluchainoe bluzhdanie annigiliruyuschikh chastits po koltsu”, Teor. i mat. fiz., 146:3 (2006), 488–498 | MR
[34] van de Leur J. W., Orlov A. Yu., Random turn walk on a half line with creation of particles at the origin, arXiv: 0801.0066
[35] Bogolyubov N. M., “$XXO$ tsepochka Geizenberga i sluchainye bluzhdaniya”, Zap. nauch. semin. POMI, 325, 2005, 13–27 | MR | Zbl
[36] Bogolyubov N. M., “Integriruemye modeli dlya zlovrednykh i druzhestvennykh peshekhodov”, Zap. nauch. semin. POMI, 335, 2006, 59–74 | MR | Zbl
[37] Bogoliubov N. M., Malyshev C., “A path-integration approach to the correlators of $XY$ Heisenberg magnet and random walks”, Proceedings of the 9th Intern. Conf. “Path Integrals: New Trends and Perspectives”, World Sci. Publ., Singapore, 2008, 508–513, arXiv: 0810.4816 | MR | Zbl
[38] Bogolyubov N. M., Malyshev K., “Korrelyatsionnye funktsii $XX$-magnetika Geizenberga i sluchainye bluzhdaniya nedruzhestvennykh peshekhodov”, Teor. i mat. fiz., 159:2 (2009), 179–193 | MR
[39] Lieb E., Schultz T., Mattis D., “Two soluble models of an antiferromagnetic chain”, Ann. Physics, 16:3 (1961), 407–466 | DOI | MR | Zbl
[40] Niemeijer Th., “Some exact calculations on a chain of spin $\frac12$, I”, Physica, 36:3 (1967), 377–419 ; “II”, 39:3 (1968), 313–326 | DOI | DOI
[41] Colomo F., Izergin A. G., Korepin V. E., Tognetti V., Correlators in the Heisenberg $XXO$ chain as Fredholm determinants, 169:4 (1992), 243–247 ; Colomo F., Izergin A. G., Korepin V. E., Tognetti V., “Temperature correlation functions in the $XXO$ Heisenberg chain, I”, Теор. и мат. физ., 94:1 (1993), 19–51 | MR | MR
[42] Izergin A. G., Kitanin N. A., Slavnov N. A., “O korrelyatsionnykh funktsiyakh $XY$ modeli”, Zap. nauch. semin. POMI, 224, 1995, 178–191 | Zbl
[43] Izergin A. G., Kapitonov V. S., Kitanin N. A., “Odnovremennye temperaturnye korrelyatory odnomernoi $XY$ tsepochki Geizenberga”, Zap. nauch. semin. POMI, 245, 1997, 173–206 | MR | Zbl
[44] Kapitonov V. S., Pronko A. G., “Raznovremennye korrelyatory lokalnykh spinov v odnomernoi $XY$ tsepochke Geizenberga”, Zap. nauch. semin. POMI, 269, 2000, 219–261 | MR | Zbl
[45] Malyshev K., “Funktsionalnoe integrirovanie s “avtomorfnym” granichnym usloviem i korrelyatory tretikh komponent spinov v $XX$-modeli Geizenberga”, Teor. i mat. fiz., 136:2 (2003), 285–298 | MR | Zbl
[46] Malyshev C., “Functional integration with “automorphic” boundary conditions and correlators of $Z$-components of spins in the $XY$ and $XX$ Heisenberg chains”, New Developments in Mathematical Physics Research, Nova Sci. Publ., Hauppauge, 2004, 85–116, arXiv: math-ph/0405009 | MR
[47] Sachdev S., Quantum phase transitions, Cambridge Univ. Press, Cambridge, 1999 | MR
[48] Colomo F., Izergin A. G., Tognetti V., “Correlation functions in the $XXO$ Heisenberg chain and their relations with spectral shapes”, J. Phys. A, 30:2 (1997), 361–370 | DOI | MR | Zbl
[49] Korepin V., Terilla J., “Thermodynamic interpretation of the quantum error correcting criterion”, Quantum Inf. Process, 1:4 (2002), 225–242 | DOI | MR
[50] Jin B.-Q., Korepin V. E., “Quantum spin chain, Toeplitz determinants and Fisher–Hartwig conjecture”, J. Statist. Phys., 116:1–4 (2004), 79–95 | DOI | MR | Zbl
[51] Alcaraz F. C., Bariev R. Z., “An exactly solvable constrained $XXZ$ chain”, Statistical physics on the eve of the 21st century, Ser. Adv. Statist. Mech., 14, World Sci. Publ., River Edge, NJ, 1999, 412–424 | MR
[52] Abarenkova N. I., Pronko A. G., “Temperaturnyi korrelyator v absolyutno anizotropnom $XXZ$-magnetike Geizenberga”, Teor. i mat. fiz., 131:2 (2002), 288–303 | MR | Zbl
[53] James A. J. A., Goetze W. D., Essler F. H. L., “Finite-temperature dynamical structure factor of the Heisenberg–Ising chain”, Phys. Rev. B, 79:21 (2009), 214408, 20 pp. | DOI
[54] Lu P., Muller G., Karbach M., Quasiparticles in the $XXZ$ model, arXiv: 0909.2728
[55] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Univ. Press, New York, 1995 | MR | Zbl
[56] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl
[57] Zhelobenko D. P., Shtern A. I., Predstavleniya grupp Li, Nauka, M., 1983 | MR
[58] Mehta M. L., Random matrices, Acad. Press, Inc., Boston, MA, 1991 | MR | Zbl
[59] Okounkov A., “Infinite wedge and random partitions”, Selecta Math. (N.S.), 7:1 (2001), 57–81 | DOI | MR | Zbl
[60] Kuperberg G., “Another proof of the alternative-sign matrix conjecture”, Int. Math. Res. Notices, 1996:3, 139–150 | DOI | MR | Zbl