Multiplicity of solutions of the Dirichlet problem for an equation with the $p$-Laplacian in a~three-dimensional spherical layer
Algebra i analiz, Tome 22 (2010) no. 3, pp. 206-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equation $-\Delta_pu=u^{q-1}$ with zero Dirichlet condition on the boundary is considered in a three-dimensional spherical layer. The existence of arbitrarily many distinct positive solutions in a sufficiently thin layer is proved.
Keywords: $p$-Laplacian, existence of many solutions.
@article{AA_2010_22_3_a10,
     author = {S. B. Kolonitskiǐ},
     title = {Multiplicity of solutions of the {Dirichlet} problem for an equation with the $p${-Laplacian} in a~three-dimensional spherical layer},
     journal = {Algebra i analiz},
     pages = {206--221},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a10/}
}
TY  - JOUR
AU  - S. B. Kolonitskiǐ
TI  - Multiplicity of solutions of the Dirichlet problem for an equation with the $p$-Laplacian in a~three-dimensional spherical layer
JO  - Algebra i analiz
PY  - 2010
SP  - 206
EP  - 221
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a10/
LA  - ru
ID  - AA_2010_22_3_a10
ER  - 
%0 Journal Article
%A S. B. Kolonitskiǐ
%T Multiplicity of solutions of the Dirichlet problem for an equation with the $p$-Laplacian in a~three-dimensional spherical layer
%J Algebra i analiz
%D 2010
%P 206-221
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_3_a10/
%G ru
%F AA_2010_22_3_a10
S. B. Kolonitskiǐ. Multiplicity of solutions of the Dirichlet problem for an equation with the $p$-Laplacian in a~three-dimensional spherical layer. Algebra i analiz, Tome 22 (2010) no. 3, pp. 206-221. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a10/

[1] Nazarov A. I., “O resheniyakh zadachi Dirikhle dlya uravneniya, vklyuchayuschego $p$-laplasian, v sfericheskom sloe”, Tr. C.-Peterburg. mat. o-va, 10, 2004, 33–62

[2] Li Y. Y., “Existence of many positive solutions of semilinear elliptic equations on annulus”, J. Differential Equations, 83 (1990), 348–367 | DOI | MR | Zbl

[3] Coffman C. V., “A nonlinear boundary value problem with many positive solutions”, J. Differential Equations, 54 (1984), 429–437 | DOI | MR | Zbl

[4] Nazarov A. I., “Ob “odnomernosti” ekstremali v neravenstve Fridrikhsa dlya sfericheskogo i ploskogo sloya”, Prob. mat. anal., 20, Nauch. kniga, Novosibirsk, 2000, 171–190

[5] Mizoguchi N., Suzuki T., “Semilinear elliptic equations on annuli in three and higher dimensions”, Houston J. Math., 22 (1996), 199–215 | MR | Zbl

[6] Byeon J., “Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli”, J. Differential Equations, 136 (1997), 136–165 | DOI | MR | Zbl

[7] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, 2-e izd., Nauka, M., 1973 | MR

[8] Palais R. S., “The principle of symmetric criticality”, Comm. Math. Phys., 69 (1979), 19–30 | DOI | MR | Zbl

[9] Trudinger N., “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. Pure Appl. Math., 20 (1967), 721–747 | DOI | MR | Zbl