Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_3_a10, author = {S. B. Kolonitskiǐ}, title = {Multiplicity of solutions of the {Dirichlet} problem for an equation with the $p${-Laplacian} in a~three-dimensional spherical layer}, journal = {Algebra i analiz}, pages = {206--221}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a10/} }
TY - JOUR AU - S. B. Kolonitskiǐ TI - Multiplicity of solutions of the Dirichlet problem for an equation with the $p$-Laplacian in a~three-dimensional spherical layer JO - Algebra i analiz PY - 2010 SP - 206 EP - 221 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a10/ LA - ru ID - AA_2010_22_3_a10 ER -
%0 Journal Article %A S. B. Kolonitskiǐ %T Multiplicity of solutions of the Dirichlet problem for an equation with the $p$-Laplacian in a~three-dimensional spherical layer %J Algebra i analiz %D 2010 %P 206-221 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2010_22_3_a10/ %G ru %F AA_2010_22_3_a10
S. B. Kolonitskiǐ. Multiplicity of solutions of the Dirichlet problem for an equation with the $p$-Laplacian in a~three-dimensional spherical layer. Algebra i analiz, Tome 22 (2010) no. 3, pp. 206-221. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a10/
[1] Nazarov A. I., “O resheniyakh zadachi Dirikhle dlya uravneniya, vklyuchayuschego $p$-laplasian, v sfericheskom sloe”, Tr. C.-Peterburg. mat. o-va, 10, 2004, 33–62
[2] Li Y. Y., “Existence of many positive solutions of semilinear elliptic equations on annulus”, J. Differential Equations, 83 (1990), 348–367 | DOI | MR | Zbl
[3] Coffman C. V., “A nonlinear boundary value problem with many positive solutions”, J. Differential Equations, 54 (1984), 429–437 | DOI | MR | Zbl
[4] Nazarov A. I., “Ob “odnomernosti” ekstremali v neravenstve Fridrikhsa dlya sfericheskogo i ploskogo sloya”, Prob. mat. anal., 20, Nauch. kniga, Novosibirsk, 2000, 171–190
[5] Mizoguchi N., Suzuki T., “Semilinear elliptic equations on annuli in three and higher dimensions”, Houston J. Math., 22 (1996), 199–215 | MR | Zbl
[6] Byeon J., “Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli”, J. Differential Equations, 136 (1997), 136–165 | DOI | MR | Zbl
[7] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, 2-e izd., Nauka, M., 1973 | MR
[8] Palais R. S., “The principle of symmetric criticality”, Comm. Math. Phys., 69 (1979), 19–30 | DOI | MR | Zbl
[9] Trudinger N., “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. Pure Appl. Math., 20 (1967), 721–747 | DOI | MR | Zbl