On rational symplectic parametrization of the coadjoint orbit of $\mathrm{GL}(N)$. Diagonalizable case
Algebra i analiz, Tome 22 (2010) no. 3, pp. 16-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing birational Darboux coordinates on a coadjoint orbit of the general linear group is presented. This method is based on the Gauss decomposition of a matrix in the product of an upper-triangular and a lower-triangular matrix. The method works uniformly for the orbits formed by the diagonalizable matrices of any size and for arbitrary dimensions of the eigenspaces.
Keywords: Darboux coordinates, symplectic form, Poisson bracket, coadjoint orbit.
@article{AA_2010_22_3_a1,
     author = {M. V. Babich and S. E. Derkachov},
     title = {On rational symplectic parametrization of the coadjoint orbit of $\mathrm{GL}(N)$. {Diagonalizable} case},
     journal = {Algebra i analiz},
     pages = {16--31},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a1/}
}
TY  - JOUR
AU  - M. V. Babich
AU  - S. E. Derkachov
TI  - On rational symplectic parametrization of the coadjoint orbit of $\mathrm{GL}(N)$. Diagonalizable case
JO  - Algebra i analiz
PY  - 2010
SP  - 16
EP  - 31
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a1/
LA  - ru
ID  - AA_2010_22_3_a1
ER  - 
%0 Journal Article
%A M. V. Babich
%A S. E. Derkachov
%T On rational symplectic parametrization of the coadjoint orbit of $\mathrm{GL}(N)$. Diagonalizable case
%J Algebra i analiz
%D 2010
%P 16-31
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_3_a1/
%G ru
%F AA_2010_22_3_a1
M. V. Babich; S. E. Derkachov. On rational symplectic parametrization of the coadjoint orbit of $\mathrm{GL}(N)$. Diagonalizable case. Algebra i analiz, Tome 22 (2010) no. 3, pp. 16-31. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a1/

[1] Hitchin N., “Geometrical aspects of Schlesinger's equation”, J. Geom. Phys., 23 (1997), 287–300 | DOI | MR | Zbl

[2] Gelfand I. M., Lektsii po lineinoi algebre, Nauka, M., 1971 | MR

[3] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR

[4] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[5] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, MGU, M., 1988 | MR

[6] Okamoto K., “Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé”, Japan. J. Math. (N.S.), 5:1 (1979), 1–79 | MR | Zbl

[7] Babich M. V., “O koordinatakh na fazovykh prostranstvakh sistemy uravnenii Shlezingera i sistemy uravnenii Garne–Penleve VI”, Dokl. RAN, 412:4 (2007), 439–443 | MR

[8] Babich M. V., “Rational symplectic coordinates on the space of Fuchs equations, $m\times m$-case”, Lett. Math. Phys., 86:1 (2008), 63–77 | DOI | MR | Zbl

[9] Marsden J., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5:1 (1974), 121–130 | DOI | MR | Zbl

[10] Reiman A. G., Semënov-Tyan-Shanskii M. A., Integriruemye sistemy. Teoretiko-gruppovoi podkhod, In-t kompyuter. issled., M.–Izhevsk, 2003; “Теоретико-групповые методы в теории конечномерных интегрируемых систем”, Динамические системы – 7, Итоги науки и техн. Соврем. пробл. мат. Фундам. направл., 16, ВИНИТИ, М., 1987, 119–194 | MR | Zbl

[11] Derkachov S. E., Manashov A. N., “$R$-matrix and Baxter $Q$-operators for the noncompact $SL(N,\mathbb C)$ invariant spin chain”, SIGMA Symmetry Integrability Geom. Methods Appl., 2 (2006), 84, arXiv: nlin.SI/0612003 | MR | Zbl

[12] Gelfand I. M., Naimark M. A., “Unitarnye predstavleniya klassicheskikh grupp”, Tr. Mat. in-ta AN SSSR, 36, 1950, 3–288 | MR | Zbl

[13] Alekseev A., Faddeev L., Shatashvili S., “Quantization of symplectic orbits of compact Lie groups by means of the functional integral”, J. Geom. Phys., 5 (1988), 391–406 | DOI | MR | Zbl

[14] Gerasimov A., Kharchev S., Lebedev D., “Representation theory and quantum inverse scattering method: the open Toda chain and the hyperbolic sutherland model”, Int. Math. Res. Not., 2004, no. 17, 823–854 | DOI | MR | Zbl

[15] Dubrovin B., Mazzocco M., “Canonical structure and symmetries of the Schlesinger equations”, Comm. Math. Phys., 271:2 (2007), 289–373 | DOI | MR | Zbl

[16] Krichever I. M., “Analog formuly Dalambera dlya uravnenii glavnogo kiralnogo polya i uravneniya Sine–Gordon”, Dokl. AN SSSR, 253:2 (1980), 288–292 | MR | Zbl

[17] Veselov A. P., Novikov S. P., “Skobki Puassona i kompleksnye tory”, Algebraicheskaya geometriya i ee prilozheniya, Tr. Mat. in-ta AN SSSR, 165, 1984, 49–61 | MR | Zbl