Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_3_a1, author = {M. V. Babich and S. E. Derkachov}, title = {On rational symplectic parametrization of the coadjoint orbit of $\mathrm{GL}(N)$. {Diagonalizable} case}, journal = {Algebra i analiz}, pages = {16--31}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a1/} }
TY - JOUR AU - M. V. Babich AU - S. E. Derkachov TI - On rational symplectic parametrization of the coadjoint orbit of $\mathrm{GL}(N)$. Diagonalizable case JO - Algebra i analiz PY - 2010 SP - 16 EP - 31 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a1/ LA - ru ID - AA_2010_22_3_a1 ER -
M. V. Babich; S. E. Derkachov. On rational symplectic parametrization of the coadjoint orbit of $\mathrm{GL}(N)$. Diagonalizable case. Algebra i analiz, Tome 22 (2010) no. 3, pp. 16-31. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a1/
[1] Hitchin N., “Geometrical aspects of Schlesinger's equation”, J. Geom. Phys., 23 (1997), 287–300 | DOI | MR | Zbl
[2] Gelfand I. M., Lektsii po lineinoi algebre, Nauka, M., 1971 | MR
[3] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR
[4] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR
[5] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, MGU, M., 1988 | MR
[6] Okamoto K., “Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé”, Japan. J. Math. (N.S.), 5:1 (1979), 1–79 | MR | Zbl
[7] Babich M. V., “O koordinatakh na fazovykh prostranstvakh sistemy uravnenii Shlezingera i sistemy uravnenii Garne–Penleve VI”, Dokl. RAN, 412:4 (2007), 439–443 | MR
[8] Babich M. V., “Rational symplectic coordinates on the space of Fuchs equations, $m\times m$-case”, Lett. Math. Phys., 86:1 (2008), 63–77 | DOI | MR | Zbl
[9] Marsden J., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5:1 (1974), 121–130 | DOI | MR | Zbl
[10] Reiman A. G., Semënov-Tyan-Shanskii M. A., Integriruemye sistemy. Teoretiko-gruppovoi podkhod, In-t kompyuter. issled., M.–Izhevsk, 2003; “Теоретико-групповые методы в теории конечномерных интегрируемых систем”, Динамические системы – 7, Итоги науки и техн. Соврем. пробл. мат. Фундам. направл., 16, ВИНИТИ, М., 1987, 119–194 | MR | Zbl
[11] Derkachov S. E., Manashov A. N., “$R$-matrix and Baxter $Q$-operators for the noncompact $SL(N,\mathbb C)$ invariant spin chain”, SIGMA Symmetry Integrability Geom. Methods Appl., 2 (2006), 84, arXiv: nlin.SI/0612003 | MR | Zbl
[12] Gelfand I. M., Naimark M. A., “Unitarnye predstavleniya klassicheskikh grupp”, Tr. Mat. in-ta AN SSSR, 36, 1950, 3–288 | MR | Zbl
[13] Alekseev A., Faddeev L., Shatashvili S., “Quantization of symplectic orbits of compact Lie groups by means of the functional integral”, J. Geom. Phys., 5 (1988), 391–406 | DOI | MR | Zbl
[14] Gerasimov A., Kharchev S., Lebedev D., “Representation theory and quantum inverse scattering method: the open Toda chain and the hyperbolic sutherland model”, Int. Math. Res. Not., 2004, no. 17, 823–854 | DOI | MR | Zbl
[15] Dubrovin B., Mazzocco M., “Canonical structure and symmetries of the Schlesinger equations”, Comm. Math. Phys., 271:2 (2007), 289–373 | DOI | MR | Zbl
[16] Krichever I. M., “Analog formuly Dalambera dlya uravnenii glavnogo kiralnogo polya i uravneniya Sine–Gordon”, Dokl. AN SSSR, 253:2 (1980), 288–292 | MR | Zbl
[17] Veselov A. P., Novikov S. P., “Skobki Puassona i kompleksnye tory”, Algebraicheskaya geometriya i ee prilozheniya, Tr. Mat. in-ta AN SSSR, 165, 1984, 49–61 | MR | Zbl