Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_3_a0, author = {I. Ya. Aref'eva and A. A. Bagrov and L. V. Joukovskaya}, title = {Several aspects of applying distributions to analysis of gravitational shock waves in general relativity}, journal = {Algebra i analiz}, pages = {3--15}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a0/} }
TY - JOUR AU - I. Ya. Aref'eva AU - A. A. Bagrov AU - L. V. Joukovskaya TI - Several aspects of applying distributions to analysis of gravitational shock waves in general relativity JO - Algebra i analiz PY - 2010 SP - 3 EP - 15 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a0/ LA - ru ID - AA_2010_22_3_a0 ER -
%0 Journal Article %A I. Ya. Aref'eva %A A. A. Bagrov %A L. V. Joukovskaya %T Several aspects of applying distributions to analysis of gravitational shock waves in general relativity %J Algebra i analiz %D 2010 %P 3-15 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2010_22_3_a0/ %G ru %F AA_2010_22_3_a0
I. Ya. Aref'eva; A. A. Bagrov; L. V. Joukovskaya. Several aspects of applying distributions to analysis of gravitational shock waves in general relativity. Algebra i analiz, Tome 22 (2010) no. 3, pp. 3-15. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a0/
[1] Aichelburg P., Sexl R., “On the gravitational field of a massless particle”, Gen. Relativity Gravitation, 2 (1971), 303 | DOI
[2] Hotta M., Tanaka M., “Shock wave geometry with nonvanishing cosmological constant”, Classical Quantum Gravity, 10 (1993), 307–314 | DOI | MR
[3] Griffiths J. B., Colliding plane waves in general relativity, Clarendon Press, New York, 1991 | MR | Zbl
[4] Podolsky J., Griffiths J. B., “Nonexpanding impulsive gravitational waves with an arbitrary cosmological constant”, Phys. Lett. A, 261 (1999), 1–4, arXiv: gr-qc/9908008 | DOI | MR | Zbl
[5] Podolsky J., Exact impulsive gravitational waves in spacetimes of constant curvature, arXiv: gr-qc/0201029
[6] Podolsky J., Ortaggio M., “Symmetries and geodesics in (anti-) de Sitter space-times with nonexpanding impulsive waves”, Classical Quantum Gravity, 18 (2001), 2689–2706, arXiv: gr-qc/0105065 | DOI | MR | Zbl
[7] Sfetsos K., “On gravitational shock waves in curved space-times”, Nuclear Phys. B, 436 (1995), 721–745, arXiv: hep-th/9408169 | DOI | MR | Zbl
[8] Aref'eva I. Ya., Bagrov A. A., Guseva E. A., Critical formation of trapped surfaces in the collision of non-expanding gravitational Shock waves in de Sitter space-time, arXiv: 0905.1087 | MR
[9] Aref'eva I. Ya., Bagrov A. A., Joukovskaya L. V., Critical trapped surfaces formation in the collision of ultrarelativistic charges in $(A)dS$, arXiv: 0909.1294
[10] Arkani-Hamed N., Dimopoulos S., Dvali G. R., “The hierarchy problem and new dimensions at a millimeter”, Phys. Lett. B, 429 (1998), 263, arXiv: hep-ph/9803315 | DOI | MR
[11] Antoniadis I., Arkani-Hamed N., Dimopoulos S., Dvali G. R., “New dimensions at a millimeter to a Fermi and superstrings at a TeV”, Phys. Lett. B, 436 (1998), 257, arXiv: hep-ph/9804398 | DOI
[12] Giudice G. F., Rattazzi R., Wells J. D., “Quantum gravity and extra dimensions at high-energy colliders”, Nuclear Phys. B, 544 (1999), 3, arXiv: hep-ph/9811291 | DOI | MR
[13] Giudice G. F., Rattazzi R., Wells J. D., “Transplanckian collisions at the LHC and beyond”, Nuclear Phys. B, 630 (2002), 293, arXiv: hep-ph/0112161 | DOI | MR | Zbl
[14] Banks T., Fischler W., A model for high energy scattering in quantum gravity, arXiv: hep-th/9906038
[15] Aref'eva I. Ya., “High-energy scattering in the brane world and black hole production”, Part. Nuclear, 31 (2000), 169, arXiv: hep-th/9910269
[16] Dimopoulos S., Landsberg G., “Black holes at the LHC”, Phys. Rev. Lett., 87 (2001), 161602, arXiv: hep-ph/0106295 | DOI
[17] Giddings S. B., Thomas S., “High energy colliders as black hole factories: The end of short distance physics”, Phys. Rev. D, 65 (2002), 056010, arXiv: hep-ph/0106219 | DOI | MR
[18] 't Hooft G., “Graviton dominance in ultrahigh-energy scattering”, Phys. Lett. B, 198 (1987), 61 | DOI
[19] 't Hooft G., “On the factorization of universal poles in a theory of gravitating point particles”, Nuclear Phys. B, 304 (1988), 867–876 | DOI | MR
[20] Dray T., 't Hooft G., “The gravitational shock wave of a massless particle”, Nuclear Phys. B, 253 (1985), 173–188 | DOI | MR
[21] D'Eath P. D., Payne P. N., “Gravitational radiation in black-hole collisions at the speed of light. I. Perturbation treatment of the axisymmetric collision”, Phys. Rev. D, 46 (1992), 658–674 | DOI | MR
[22] D'Eath P. D., Payne P. N., “Gravitational radiation in black-hole collisions at the speed of light. II. Reduction to two independent variables and calculation of the second order news function”, Phys. Rev. D, 46 (1992), 675–693 | DOI | MR
[23] D'Eath P. D., Payne P. N., “Gravitational radiation in black-hole collisions at the speed of light. III. Results and conclusions”, Phys. Rev. D, 46 (1992), 694–701 | DOI | MR
[24] Steinbauer R., Vickers J. A., “The use of generalized functions and distributions in general relativity”, Classical Quantum Gravity, 23 (2006), R91–R114, arXiv: gr-qc/0603078 | DOI | MR | Zbl
[25] Balasin H., “Distributional energy-momentum tensor of the extended Kerr geometry”, Classical Quantum Gravity, 14 (1997), 3353–3362, arXiv: gr-qc/9702060 | DOI | MR | Zbl
[26] Balasin H., Nachbagauer H., On the distributional nature of the energy-momentum tensor of a black hole or what curves the Schwarzschild geometry?, arXiv: gr-qc/9305009
[27] Balasin H., “Geodesics for impulsive gravitational waves and the multiplication of distributions”, Classical Quantum Gravity, 14 (1997), 455–462, arXiv: gr-qc/9607076 | DOI | MR | Zbl
[28] Gelfand I. M., Shilov G. E., Obobschennye funktsii. I. Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1958
[29] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl