Several aspects of applying distributions to analysis of gravitational shock waves in general relativity
Algebra i analiz, Tome 22 (2010) no. 3, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The ultrarelativistic limit of the stationary Schwarzschild solution in de Sitter space-time of dimension $D=4,5$ is considered. A regularization procedure required for the mathematically correct definition of such a limit is formulated. Some auxiliary statements are proved.
Keywords: dS space-time, gravitational waves, regularization.
@article{AA_2010_22_3_a0,
     author = {I. Ya. Aref'eva and A. A. Bagrov and L. V. Joukovskaya},
     title = {Several aspects of applying distributions to analysis of gravitational shock waves in general relativity},
     journal = {Algebra i analiz},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a0/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - A. A. Bagrov
AU  - L. V. Joukovskaya
TI  - Several aspects of applying distributions to analysis of gravitational shock waves in general relativity
JO  - Algebra i analiz
PY  - 2010
SP  - 3
EP  - 15
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a0/
LA  - ru
ID  - AA_2010_22_3_a0
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A A. A. Bagrov
%A L. V. Joukovskaya
%T Several aspects of applying distributions to analysis of gravitational shock waves in general relativity
%J Algebra i analiz
%D 2010
%P 3-15
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_3_a0/
%G ru
%F AA_2010_22_3_a0
I. Ya. Aref'eva; A. A. Bagrov; L. V. Joukovskaya. Several aspects of applying distributions to analysis of gravitational shock waves in general relativity. Algebra i analiz, Tome 22 (2010) no. 3, pp. 3-15. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a0/

[1] Aichelburg P., Sexl R., “On the gravitational field of a massless particle”, Gen. Relativity Gravitation, 2 (1971), 303 | DOI

[2] Hotta M., Tanaka M., “Shock wave geometry with nonvanishing cosmological constant”, Classical Quantum Gravity, 10 (1993), 307–314 | DOI | MR

[3] Griffiths J. B., Colliding plane waves in general relativity, Clarendon Press, New York, 1991 | MR | Zbl

[4] Podolsky J., Griffiths J. B., “Nonexpanding impulsive gravitational waves with an arbitrary cosmological constant”, Phys. Lett. A, 261 (1999), 1–4, arXiv: gr-qc/9908008 | DOI | MR | Zbl

[5] Podolsky J., Exact impulsive gravitational waves in spacetimes of constant curvature, arXiv: gr-qc/0201029

[6] Podolsky J., Ortaggio M., “Symmetries and geodesics in (anti-) de Sitter space-times with nonexpanding impulsive waves”, Classical Quantum Gravity, 18 (2001), 2689–2706, arXiv: gr-qc/0105065 | DOI | MR | Zbl

[7] Sfetsos K., “On gravitational shock waves in curved space-times”, Nuclear Phys. B, 436 (1995), 721–745, arXiv: hep-th/9408169 | DOI | MR | Zbl

[8] Aref'eva I. Ya., Bagrov A. A., Guseva E. A., Critical formation of trapped surfaces in the collision of non-expanding gravitational Shock waves in de Sitter space-time, arXiv: 0905.1087 | MR

[9] Aref'eva I. Ya., Bagrov A. A., Joukovskaya L. V., Critical trapped surfaces formation in the collision of ultrarelativistic charges in $(A)dS$, arXiv: 0909.1294

[10] Arkani-Hamed N., Dimopoulos S., Dvali G. R., “The hierarchy problem and new dimensions at a millimeter”, Phys. Lett. B, 429 (1998), 263, arXiv: hep-ph/9803315 | DOI | MR

[11] Antoniadis I., Arkani-Hamed N., Dimopoulos S., Dvali G. R., “New dimensions at a millimeter to a Fermi and superstrings at a TeV”, Phys. Lett. B, 436 (1998), 257, arXiv: hep-ph/9804398 | DOI

[12] Giudice G. F., Rattazzi R., Wells J. D., “Quantum gravity and extra dimensions at high-energy colliders”, Nuclear Phys. B, 544 (1999), 3, arXiv: hep-ph/9811291 | DOI | MR

[13] Giudice G. F., Rattazzi R., Wells J. D., “Transplanckian collisions at the LHC and beyond”, Nuclear Phys. B, 630 (2002), 293, arXiv: hep-ph/0112161 | DOI | MR | Zbl

[14] Banks T., Fischler W., A model for high energy scattering in quantum gravity, arXiv: hep-th/9906038

[15] Aref'eva I. Ya., “High-energy scattering in the brane world and black hole production”, Part. Nuclear, 31 (2000), 169, arXiv: hep-th/9910269

[16] Dimopoulos S., Landsberg G., “Black holes at the LHC”, Phys. Rev. Lett., 87 (2001), 161602, arXiv: hep-ph/0106295 | DOI

[17] Giddings S. B., Thomas S., “High energy colliders as black hole factories: The end of short distance physics”, Phys. Rev. D, 65 (2002), 056010, arXiv: hep-ph/0106219 | DOI | MR

[18] 't Hooft G., “Graviton dominance in ultrahigh-energy scattering”, Phys. Lett. B, 198 (1987), 61 | DOI

[19] 't Hooft G., “On the factorization of universal poles in a theory of gravitating point particles”, Nuclear Phys. B, 304 (1988), 867–876 | DOI | MR

[20] Dray T., 't Hooft G., “The gravitational shock wave of a massless particle”, Nuclear Phys. B, 253 (1985), 173–188 | DOI | MR

[21] D'Eath P. D., Payne P. N., “Gravitational radiation in black-hole collisions at the speed of light. I. Perturbation treatment of the axisymmetric collision”, Phys. Rev. D, 46 (1992), 658–674 | DOI | MR

[22] D'Eath P. D., Payne P. N., “Gravitational radiation in black-hole collisions at the speed of light. II. Reduction to two independent variables and calculation of the second order news function”, Phys. Rev. D, 46 (1992), 675–693 | DOI | MR

[23] D'Eath P. D., Payne P. N., “Gravitational radiation in black-hole collisions at the speed of light. III. Results and conclusions”, Phys. Rev. D, 46 (1992), 694–701 | DOI | MR

[24] Steinbauer R., Vickers J. A., “The use of generalized functions and distributions in general relativity”, Classical Quantum Gravity, 23 (2006), R91–R114, arXiv: gr-qc/0603078 | DOI | MR | Zbl

[25] Balasin H., “Distributional energy-momentum tensor of the extended Kerr geometry”, Classical Quantum Gravity, 14 (1997), 3353–3362, arXiv: gr-qc/9702060 | DOI | MR | Zbl

[26] Balasin H., Nachbagauer H., On the distributional nature of the energy-momentum tensor of a black hole or what curves the Schwarzschild geometry?, arXiv: gr-qc/9305009

[27] Balasin H., “Geodesics for impulsive gravitational waves and the multiplication of distributions”, Classical Quantum Gravity, 14 (1997), 455–462, arXiv: gr-qc/9607076 | DOI | MR | Zbl

[28] Gelfand I. M., Shilov G. E., Obobschennye funktsii. I. Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1958

[29] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl