Linearly controlled asymptotic dimension of the fundamental group of a~graph-manifold
Algebra i analiz, Tome 22 (2010) no. 2, pp. 185-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the estimate $\ell\text{-asdim}\,\pi_1(M)\leq7$ for the linearly controlled asymptotic dimension of the fundamental group of any 3-dimensional graph-manifold $M$. As applications, we show that the universal cover $\widetilde M$ of $M$ is an absolute Lipschitz retract and admits a quasisymmetric embedding into the product of 8 metric trees.
Keywords: graph-manifold, asymptotic dimension.
@article{AA_2010_22_2_a5,
     author = {A. Smirnov},
     title = {Linearly controlled asymptotic dimension of the fundamental group of a~graph-manifold},
     journal = {Algebra i analiz},
     pages = {185--203},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_2_a5/}
}
TY  - JOUR
AU  - A. Smirnov
TI  - Linearly controlled asymptotic dimension of the fundamental group of a~graph-manifold
JO  - Algebra i analiz
PY  - 2010
SP  - 185
EP  - 203
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_2_a5/
LA  - ru
ID  - AA_2010_22_2_a5
ER  - 
%0 Journal Article
%A A. Smirnov
%T Linearly controlled asymptotic dimension of the fundamental group of a~graph-manifold
%J Algebra i analiz
%D 2010
%P 185-203
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_2_a5/
%G ru
%F AA_2010_22_2_a5
A. Smirnov. Linearly controlled asymptotic dimension of the fundamental group of a~graph-manifold. Algebra i analiz, Tome 22 (2010) no. 2, pp. 185-203. http://geodesic.mathdoc.fr/item/AA_2010_22_2_a5/

[1] Assouad P., “Sur la distance de Nagata”, C. R. Acad. Sci. Paris Sér. I Math., 294:1 (1982), 31–34 | MR | Zbl

[2] Behrstock J. A., Neumann W. D., “Quasi-isometric classification of graph manifold groups”, Duke Math. J., 141:2 (2008), 217–240 | DOI | MR | Zbl

[3] Bell G., Dranishnikov A., “On asymptotic dimension of groups acting on trees”, Geom. Dedicata, 103:1 (2004), 89–101 | DOI | MR | Zbl

[4] Bridson M. R., Haefliger A., Metric spaces of nonpositive curvature, Grunlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | MR | Zbl

[5] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyuter. issled., M.–Izhevsk, 2005, 512 pp.

[6] Buyalo S. V., “Asimptoticheskaya razmernost giperbolicheskogo prostranstva i emkostnaya razmernost ego granitsy na beskonechnosti”, Algebra i analiz, 17:2 (2005), 70–95 | MR | Zbl

[7] Dranishnikov A., Zarichnyi M., “Universal spaces for asymptotic dimension”, Topology Appl., 140:2–3 (2004), 203–225 | DOI | MR | Zbl

[8] Gromov M., “Asymptotic invariants of infinite groups”, Geometric group theory (Sussex, 1991), v. 2, London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993, 1–295 | MR

[9] Lang U., Schlichenmaier T., “Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions”, Int. Math. Res. Not., 2005:58 (2005), 3625–3655 | DOI | MR | Zbl

[10] Roe J., Lectures on coarse geometry, Univ. Lecture Ser., 31, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[11] Yu G., “The Novikov conjecture for groups with finite asymptotic dimension”, Ann. of Math. (2), 147:2 (1998), 325–355 | DOI | MR | Zbl