The trace of $BV$-functions on an irregular subset
Algebra i analiz, Tome 22 (2010) no. 2, pp. 105-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Certain basic results on the boundary trace discussed in Maz'ya's monograph on Sobolev spaces are generalized to a wider class of regions. The paper is an extended and supplemented version of a preliminary publication, where some results were presented without proofs or in a weaker form. In Maz'ya's monograph, the boundary trace was defined for regions $\Omega$ with finite perimeter, and the main results were obtained under the assumption that normals in the sense of Federer exist almost everywhere on the boundary. Instead, now it is assumed that the region boundary is a countably $(n-1)$-rectifiable set, which is a more general condition.
Keywords: trace, rectifiability, perimeter, embedding theorems.
@article{AA_2010_22_2_a2,
     author = {Yu. D. Burago and N. N. Kosovskiǐ},
     title = {The trace of $BV$-functions on an irregular subset},
     journal = {Algebra i analiz},
     pages = {105--126},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_2_a2/}
}
TY  - JOUR
AU  - Yu. D. Burago
AU  - N. N. Kosovskiǐ
TI  - The trace of $BV$-functions on an irregular subset
JO  - Algebra i analiz
PY  - 2010
SP  - 105
EP  - 126
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_2_a2/
LA  - ru
ID  - AA_2010_22_2_a2
ER  - 
%0 Journal Article
%A Yu. D. Burago
%A N. N. Kosovskiǐ
%T The trace of $BV$-functions on an irregular subset
%J Algebra i analiz
%D 2010
%P 105-126
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_2_a2/
%G ru
%F AA_2010_22_2_a2
Yu. D. Burago; N. N. Kosovskiǐ. The trace of $BV$-functions on an irregular subset. Algebra i analiz, Tome 22 (2010) no. 2, pp. 105-126. http://geodesic.mathdoc.fr/item/AA_2010_22_2_a2/

[1] Almgren J. J., The theory of varifolds, Preprint, Princeton, 1965

[2] Burago Yu., Kosovskiy N., “Boundary trace for $BV$ functions in regions with irregular boundary”, Analysis, Partial Differential Equations and Applications, The Vladimir Maz'ya Anniversary Volume, Oper. Theory Adv. Appl., 193, Birkhäuser Verlag, Basel, 2009, 1–14 | MR

[3] Burago Yu., Mazya V., “O prostranstve funktsii, proizvodnye kotorykh yavlyayutsya merami, II”, Zap. nauch. semin. LOMI, 3, 1967, 87–150 | MR | Zbl

[4] Dzhusti E., Minimalnye poverkhnosti i funktsii ogranichennoi variatsii, Mir, M., 1989 | MR

[5] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985 | MR

[6] Mazya V. G., “Klassy oblastei i teoremy vlozheniya funktsionalnykh prostranstv”, Dokl. AN SSSR, 133:3 (1960), 527–530

[7] Morgan F., Geometric measure theory: A beginner's guide, 3rd ed., Acad. Press, Inc., San Diego, CA, 2000 | MR | Zbl

[8] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[9] Fleming W. H., Rishel R. W., “An integral formula for total gradient variation”, Arch. Math. (Basel), 11 (1960), 218–222 | MR | Zbl

[10] Ziemer W., Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Grad. Texts. in Math., 120, Springer-Verlag, New York, 1989 | MR | Zbl