Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_2_a2, author = {Yu. D. Burago and N. N. Kosovskiǐ}, title = {The trace of $BV$-functions on an irregular subset}, journal = {Algebra i analiz}, pages = {105--126}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_2_a2/} }
Yu. D. Burago; N. N. Kosovskiǐ. The trace of $BV$-functions on an irregular subset. Algebra i analiz, Tome 22 (2010) no. 2, pp. 105-126. http://geodesic.mathdoc.fr/item/AA_2010_22_2_a2/
[1] Almgren J. J., The theory of varifolds, Preprint, Princeton, 1965
[2] Burago Yu., Kosovskiy N., “Boundary trace for $BV$ functions in regions with irregular boundary”, Analysis, Partial Differential Equations and Applications, The Vladimir Maz'ya Anniversary Volume, Oper. Theory Adv. Appl., 193, Birkhäuser Verlag, Basel, 2009, 1–14 | MR
[3] Burago Yu., Mazya V., “O prostranstve funktsii, proizvodnye kotorykh yavlyayutsya merami, II”, Zap. nauch. semin. LOMI, 3, 1967, 87–150 | MR | Zbl
[4] Dzhusti E., Minimalnye poverkhnosti i funktsii ogranichennoi variatsii, Mir, M., 1989 | MR
[5] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985 | MR
[6] Mazya V. G., “Klassy oblastei i teoremy vlozheniya funktsionalnykh prostranstv”, Dokl. AN SSSR, 133:3 (1960), 527–530
[7] Morgan F., Geometric measure theory: A beginner's guide, 3rd ed., Acad. Press, Inc., San Diego, CA, 2000 | MR | Zbl
[8] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl
[9] Fleming W. H., Rishel R. W., “An integral formula for total gradient variation”, Arch. Math. (Basel), 11 (1960), 218–222 | MR | Zbl
[10] Ziemer W., Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Grad. Texts. in Math., 120, Springer-Verlag, New York, 1989 | MR | Zbl