Cluster $\mathcal X$-varieties for dual Poisson--Lie groups.~I
Algebra i analiz, Tome 22 (2010) no. 2, pp. 14-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We associate a family of cluster $\mathcal X$-varieties with the dual Poisson–Lie group $G^*$ of a complex semi-simple Lie group $G$ of adjoint type given with the standard Poisson structure. This family is described by the $W$-permutohedron associated with the Lie algebra $\mathfrak g$ of $G$, vertices being labeled by cluster $\mathcal X$-varieties and edges by new Poisson birational isomorphisms on appropriate seed $\mathcal X$-tori, called saltation. The underlying combinatorics is based on a factorization of the Fomin–Zelevinsky twist maps into mutations and other new Poisson birational isomorphisms on seed $\mathcal X$-tori, called tropical mutations (because they are obtained by a tropicalization of the mutation formula), associated with an enrichment of the combinatorics on double words of the Weyl group $W$ of $G$.
Keywords: cluster combinatorics, Poisson structure, tropical mutation, saltations.
@article{AA_2010_22_2_a1,
     author = {R. Brahami},
     title = {Cluster $\mathcal X$-varieties for dual {Poisson--Lie} {groups.~I}},
     journal = {Algebra i analiz},
     pages = {14--104},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_2_a1/}
}
TY  - JOUR
AU  - R. Brahami
TI  - Cluster $\mathcal X$-varieties for dual Poisson--Lie groups.~I
JO  - Algebra i analiz
PY  - 2010
SP  - 14
EP  - 104
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_2_a1/
LA  - en
ID  - AA_2010_22_2_a1
ER  - 
%0 Journal Article
%A R. Brahami
%T Cluster $\mathcal X$-varieties for dual Poisson--Lie groups.~I
%J Algebra i analiz
%D 2010
%P 14-104
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_2_a1/
%G en
%F AA_2010_22_2_a1
R. Brahami. Cluster $\mathcal X$-varieties for dual Poisson--Lie groups.~I. Algebra i analiz, Tome 22 (2010) no. 2, pp. 14-104. http://geodesic.mathdoc.fr/item/AA_2010_22_2_a1/

[1] Alekseev A. Yu., Malkin A. Z., “Symplectic structures associated to Lie–Poisson groups”, Comm. Math. Phys., 162:1 (1994), 147–173 | DOI | MR | Zbl

[2] Berenstein Arkady, Fomin Sergey, Zelevinsky Andrei, “Cluster algebras. III. Upper bounds and double Bruhat cells”, Duke Math. J., 126:1 (2005), 1–52 | DOI | MR | Zbl

[3] Berenstein Arkady, Zelevinsky Andrei, “Tensor product multiplicities, canonical bases and totally positive varieties”, Invent. Math., 143:1 (2001), 77–128 | DOI | MR | Zbl

[4] Björner Anders, Brenti Francesco, Combinatorics of Coxeter groups, Grad. Texts in Math., 231, Springer, New York, 2005 | MR | Zbl

[5] Brahami Renaud, Cluster $\mathcal X$-varieties and dual Poisson–Lie groups, II, in preparation

[6] Evens Sam, Lu Jiang-Hua, “Poisson geometry of the Grothendieck resolution of a complex semisimple group”, Mosc. Math. J., 7:4 (2007), 613–642 (English) | MR | Zbl

[7] Fock Vladimir, Goncharov Alexander, “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 103 (2006), 1–211 | MR | Zbl

[8] Fock V. V., Goncharov A. B., “Cluster $\mathcal X$-varieties, amalgamation, and Poisson–Lie groups”, Algebraic Geometry and Number Theory, Progr. Math., 253, Birkhäuser Boston, Boston, MA, 2006, 27–68 | MR | Zbl

[9] Fock V. V., Goncharov A. B., Cluster ensembles, quantization and the dilogarithm, arXiv: math/0311245 | MR

[10] Fock V. V., Goncharov A. B., The quantum dilogarithm and representations quantum cluster varieties, arXiv: math/0702397

[11] Fomin Sergey, Reading Nathan, “Root systems and generalized associahedra”, Geometric Combinatorics, IAS/Park City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007, 63–131 | MR | Zbl

[12] Fomin Sergey, Shapiro Michael, Thurston Dylan, Cluster algebras and triangulated surfaces. I. Cluster complexes, arXiv: math/0608367 | MR

[13] Fomin Sergey, Zelevinsky Andrei, “Cluster algebras. I. Foundations”, J. Amer. Math. Soc., 15:2 (2002), 497–529 | DOI | MR | Zbl

[14] Fomin Sergey, Zelevinsky Andrei, “Cluster algebras. II. Finite type classification”, Invent. Math., 154:1 (2003), 63–121 | DOI | MR | Zbl

[15] Fomin Sergey, Zelevinsky Andrei, “Cluster algebras. IV. Coefficients”, Compos. Math., 143:1 (2007), 112–164 | DOI | MR | Zbl

[16] Fomin Sergey, Zelevinsky Andrei, “Double Bruhat cells and total positivity”, J. Amer. Math. Soc., 12:2 (1999), 335–380 | DOI | MR | Zbl

[17] Fulton W., Harris J., Representation theory, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 | MR | Zbl

[18] Gekhtman Michael, Shapiro Michael, Vainshtein Alek, “Cluster algebras and Poisson geometry”, Mosc. Math. J., 3:3 (2003), 899–934 (English) | MR | Zbl

[19] Hoffmann T., Kellendonk J., Kutz N., Reshetikhin N., “Factorization dynamics and Coxeter–Toda lattices”, Comm. Math. Phys., 212:2 (2000), 297–321 | DOI | MR | Zbl

[20] Kogan Mikhail, Zelevinsky Andrei, “On symplectic leaves and integrable systems in standard complex semisimple Poisson–Lie groups”, Int. Math. Res. Not., 2002:32 (2002), 1685–1702 | DOI | MR | Zbl

[21] Lu Jiang-Hua, Weinstein Alan, “Poisson Lie groups, dressing transformations, and Bruhat decompositions”, J. Differential Geom., 31:2 (1990), 501–526 | MR | Zbl

[22] Postnikov A., Permutohedra, associahedra, and beyond, arXiv: math/0507163v1 | MR

[23] Reshetikhin N., “Integrability of characteristic Hamiltonian systems on simple Lie groups with standard Poisson Lie structure”, Comm. Math. Phys., 242 (2003), 1–29 | MR | Zbl

[24] Semenov-Tian-Shansky M., “Dressing transformations and Poisson group actions”, Publ. Res. Inst. Math. Sci., 21:6 (1985), 1237–1260 | DOI | MR | Zbl

[25] Theoret and Math. Phys., 93:2 (1992), 1292–1307, (1993) | DOI | MR | Zbl